Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略

简介: Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略

klearn2pmml库函数的简介


       sklearn2pmml是用于将Scikit学习管道转换为PMML的Python库。这个库是JPMML-SkLearn命令行应用程序的一个瘦包装。有关支持的评估器和转换器类型的列表,请参考JPMML-SkLearn特性。



1、一个典型的工作流总结


创建一个PMMLPipeline对象,并像往常一样用管道步骤填充它。类sklearn2pmml.pipeline。PMMLPipeline扩展了sklearn.pipeline类。管道具有以下功能:

如果PMMLPipeline。fit(X, y)方法是用panda调用的。DataFrame或熊猫。Series对象作为X参数,然后它的列名用作特性名。否则,特征名称默认为“x1”、“x2”,..“x {number_of_features}”。

如果PMMLPipeline。fit(X, y)方法是用panda调用的。Series对象作为y参数,然后将其名称用作目标名称(对于监督模型)。否则,目标名称默认为“y”。

像往常一样安装和验证pipeline。

可选地,通过调用PMMLPipeline.verify(X)方法来计算验证数据并将其嵌入到PMMLPipeline对象中,该方法使用的是一个较小但有代表性的训练数据子集。

通过调用实用程序方法sklearn2pmml,将PMMLPipeline对象转换为本地文件系统中的PMML文件。pmml_destination_path sklearn2pmml(pipeline)。



sklearn2pmml库函数的安装


pip install sklearn2pmml

pip install --user -i https://pypi.tuna.tsinghua.edu.cn/simple sklearn2pmml

image.png







sklearn2pmml库函数的使用方法


1、一个简单的鸢尾物种分类决策树模型


import pandas

iris_df = pandas.read_csv("Iris.csv")

iris_X = iris_df[iris_df.columns.difference(["Species"])]

iris_y = iris_df["Species"]

from sklearn.tree import DecisionTreeClassifier

from sklearn2pmml.pipeline import PMMLPipeline

pipeline = PMMLPipeline([

("classifier", DecisionTreeClassifier())

])

pipeline.fit(iris_X, iris_y)

from sklearn2pmml import sklearn2pmml

sklearn2pmml(pipeline, "DecisionTreeIris.pmml", with_repr = True)


2、更精细的逻辑回归模型


import pandas

iris_df = pandas.read_csv("Iris.csv")

iris_X = iris_df[iris_df.columns.difference(["Species"])]

iris_y = iris_df["Species"]

from sklearn_pandas import DataFrameMapper

from sklearn.decomposition import PCA

from sklearn.feature_selection import SelectKBest

from sklearn.impute import SimpleImputer

from sklearn.linear_model import LogisticRegression

from sklearn2pmml.decoration import ContinuousDomain

from sklearn2pmml.pipeline import PMMLPipeline

pipeline = PMMLPipeline([

("mapper", DataFrameMapper([

 (["Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"], [ContinuousDomain(), SimpleImputer()])

])),

("pca", PCA(n_components = 3)),

("selector", SelectKBest(k = 2)),

("classifier", LogisticRegression(multi_class = "ovr"))

])

pipeline.fit(iris_X, iris_y)

pipeline.verify(iris_X.sample(n = 15))

from sklearn2pmml import sklearn2pmml

sklearn2pmml(pipeline, "LogisticRegressionIris.pmml", with_repr = True)


相关文章
|
7天前
|
数据采集 运维 Java
课时13:Python简介
今天我们分享的是 Python 的简单介绍,主要分为以下四部分。 1. Python 的百科介绍 2. Python 的发明者 3. Python 的发展历史 4. Python 的用途
|
13天前
|
C语言 Python
Python学习:内建属性、内建函数的教程
本文介绍了Python中的内建属性和内建函数。内建属性包括`__init__`、`__new__`、`__class__`等,通过`dir()`函数可以查看类的所有内建属性。内建函数如`range`、`map`、`filter`、`reduce`和`sorted`等,分别用于生成序列、映射操作、过滤操作、累积计算和排序。其中,`reduce`在Python 3中需从`functools`模块导入。示例代码展示了这些特性和函数的具体用法及注意事项。
|
13天前
|
Go Python
Python中的round函数详解及使用示例
`round()`函数是Python内置的用于四舍五入数字的工具。它接受一个数字(必需)和可选的小数位数参数,返回最接近的整数或指定精度的浮点数。本文详细介绍其用法、参数及示例,涵盖基本操作、负数处理、特殊情况及应用建议,帮助你更好地理解和运用该函数。
|
14天前
|
人工智能 数据库连接 开发工具
[oeasy]python069_当前作用域都有些什么_列表dir_函数_builtins
本文介绍了Python中`dir()`函数的使用方法及其作用。`dir()`可以列出当前作用域内的所有变量和成员,类似于`locals()`,但`dir()`不仅限于本地变量,还能显示模块中的所有成员。通过`dir(__builtins__)`可以查看内建模块中的所有内建函数,如`print`、`ord`、`chr`等。此外,还回顾了`try-except-finally`结构在数据库连接中的应用,并解释了为何`print`函数可以直接使用而无需导入,因为它位于`__builtins__`模块中。最后,简要提及了删除`__builtins__.print`的方法及其影响。
28 0
|
21天前
|
开发者 Python
Python入门:8.Python中的函数
### 引言 在编写程序时,函数是一种强大的工具。它们可以将代码逻辑模块化,减少重复代码的编写,并提高程序的可读性和可维护性。无论是初学者还是资深开发者,深入理解函数的使用和设计都是编写高质量代码的基础。本文将从基础概念开始,逐步讲解 Python 中的函数及其高级特性。
Python入门:8.Python中的函数
|
2月前
|
存储 人工智能 Python
[oeasy]python061_如何接收输入_input函数_字符串_str_容器_ 输入输出
本文介绍了Python中如何使用`input()`函数接收用户输入。`input()`函数可以从标准输入流获取字符串,并将其赋值给变量。通过键盘输入的值可以实时赋予变量,实现动态输入。为了更好地理解其用法,文中通过实例演示了如何接收用户输入并存储在变量中,还介绍了`input()`函数的参数`prompt`,用于提供输入提示信息。最后总结了`input()`函数的核心功能及其应用场景。更多内容可参考蓝桥、GitHub和Gitee上的相关教程。
32 0
|
机器学习/深度学习 Python
Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略daiding
Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略daiding
Python之sklearn2pmml:sklearn2pmml库函数的简介、安装、使用方法之详细攻略daiding
|
4天前
|
机器学习/深度学习 设计模式 API
Python 高级编程与实战:构建 RESTful API
本文深入探讨了使用 Python 构建 RESTful API 的方法,涵盖 Flask、Django REST Framework 和 FastAPI 三个主流框架。通过实战项目示例,详细讲解了如何处理 GET、POST 请求,并返回相应数据。学习这些技术将帮助你掌握构建高效、可靠的 Web API。
|
4天前
|
机器学习/深度学习 设计模式 测试技术
Python 高级编程与实战:构建自动化测试框架
本文深入探讨了Python中的自动化测试框架,包括unittest、pytest和nose2,并通过实战项目帮助读者掌握这些技术。文中详细介绍了各框架的基本用法和示例代码,助力开发者快速验证代码正确性,减少手动测试工作量。学习资源推荐包括Python官方文档及Real Python等网站。
|
5天前
|
机器学习/深度学习 设计模式 API
Python 高级编程与实战:构建微服务架构
本文深入探讨了 Python 中的微服务架构,介绍了 Flask、FastAPI 和 Nameko 三个常用框架,并通过实战项目帮助读者掌握这些技术。每个框架都提供了构建微服务的示例代码,包括简单的 API 接口实现。通过学习本文,读者将能够使用 Python 构建高效、独立的微服务。

热门文章

最新文章

推荐镜像

更多