内核代码阅读(5) - do_page_fault之栈扩展

简介: do_page_fault之栈扩展

Page Fault缺页中断

缺页中断的整体流程

缺页中断要处理的场景有:

1) 栈扩展的时候要进行缺页中断,特征是 address在vma->start下面(想想APUE上面那张内存布局的图)。

2)正常malloc出来的内存,address在一个vma中间。

3 ) 中断代码执行的时候遇到了缺页。

这个操作是CPU架构相关的,代码在arch/i386mm/fault.c

伪代码:

asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code)
{
    /*
     * 当发生页面异常的时候,CPU将导致映射失败的线性地址放入控制寄存器CR2中.
     * 同时, 内核的中断机制会把现场(各个寄存器的值)保存下来(参数regs), error_code进一步指明失败的具体原因.
     */
    __asm__("movl %%cr2,%0":"=r" (address)); //取出CR2到address变量中
    /* 
     * 取出当前进程的task_struct结构, current是一个宏:
     * _asm__("andl %%esp,%0; ":"=r" (current) : "0" (~8191UL));
     */
    tsk = current;
    mm = tsk->mm;
    /*
     * 检查当前的pagefault是否于一个进程关联了.
     * in_interrupt返回1说明正在一个中断服务程序中发生了pagefault,而于特定的进程无关联.
     * 我们主要看和进程有关联的pagefault,也就是用户层分配内存导致了pagefault.
     */
    if (in_interrupt() || !mm)
    goto no_context;
    // 接下来的操作需要互斥    
    down(&mm->mmap_sem);
    /*
     * 找到异常地址所属于的vma
     * 如果找不到,说明用户程序越界了.
     */
    vma = find_vma(mm, address);
    if (vma->vm_start <= address) // 找到了address对应的vma,虚拟内存的映射已经建立,仍然有pagefault说明还没有进行物理内存的映射
    goto good_area;
    if (!(vma->vm_flags & VM_GROWSDOWN)) // vma_end一直向上找,直到最上面的栈区,说明要寻找的vma是mmap区域的一个vma,不过已经被unmmap掉了。
    goto bad_area;
    // 再看bad_area
bad_area:
    up(&mm->mmap_sem); // 释放锁
bad_area_nosemaphore:
    /*
     * 通过error_code检查本次的异常是由内核引发的还是用户态的程序引发的。
     * 设置进程的状态,然后强制向进程发送一个SIGSEGV的信号。然后结束了。
     */
    if (error_code & 4) {
    tsk->thread.cr2 = address;
    tsk->thread.error_code = error_code;
    tsk->thread.trap_no = 14;
    info.si_signo = SIGSEGV;
    info.si_errno = 0;
    /* info.si_code has been set above */
    info.si_addr = (void *)address;
    force_sig_info(SIGSEGV, &info, tsk);
    return;
    }
}

每次从中断/异常返回之前,都要检查当前是否由悬而未决的信号需要处理。


缺页中断场景1 - 进程中栈的扩展

分析当发生函数调用进行push参数的时候,栈的空间页不够用的情形,也就是最普通的pagefault情形。
代码在do_page_fault:151开始。
asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code) {
        if (error_code & 4) {
        /*
         * 正常情况下push指令会往栈里塞4个字节的数据,检查越界的条件是 address<%esp-4
         * 次处多给address留了32字节,原因是i386的pusha指令会把8个32位寄存器32个字节的内容压入栈,所以有可能缺少32字节。
         */
        if (address + 32 < regs->esp)
        goto bad_area;
    }
    if (expand_stack(vma, address))
        goto bad_area;
good_area:
    info.si_code = SEGV_ACCERR;
    write = 0;
    /*
     * 根据error_code 进一步判断。次处的bit0是0, bit1是1(允许写入) 所以进入case 2
     */
    switch (error_code & 3) {
        default:    /* 3: write, present */
        case 2:        /* write, not present */
        if (!(vma->vm_flags & VM_WRITE))
            goto bad_area;
        write++;
        break;
        case 1:        /* read, present */
        goto bad_area;
        case 0:        /* read, not present */
        if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
            goto bad_area;
    }
    /*
     * 开始真正的pagefault了!!!
     */
    switch (handle_mm_fault(mm, vma, address, write)) {
        case 1:
        tsk->min_flt++;
        break;
        case 2:
        tsk->maj_flt++;
        break;
        case 0:
        goto do_sigbus;
        default:
        goto out_of_memory;
    }
}


1)先来看一下栈对应vma的扩展

2)栈的扩展代码在include/linux/mm.h 可见这是一个通用的操作和架构无关。

static inline int expand_stack(struct vm_area_struct * vma, unsigned long address) {
    unsigned long grow;
    address &= PAGE_MASK; // 把地址按页对齐,address是所属页的下面的边界
    grow = (vma->vm_start - address) >> PAGE_SHIFT; // 所需要扩展的页面数
    /*
     * 检查限制。每个进程的task_struct结构里都有一个rlim数组,里面有各种对资源的限制
     */
    if (vma->vm_end - address > current->rlim[RLIMIT_STACK].rlim_cur ||
    ((vma->vm_mm->total_vm + grow) << PAGE_SHIFT) > current->rlim[RLIMIT_AS].rlim_cur)
    return -ENOMEM;
    // 更新vma的start为address所在页面的低边界    
    vma->vm_start = address;
    vma->vm_pgoff -= grow;
    vma->vm_mm->total_vm += grow;
    if (vma->vm_flags & VM_LOCKED)
    vma->vm_mm->locked_vm += grow;
    return 0;
}


1)缺页中断的任务是建立从虚拟内存到物理内存的映射,映射过程中的页表可能也没有分配。所以要逐级的检查页表是否为空。

2) 页面的分配也是一次分配一个页面。

int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
            unsigned long address, int write_access)
{
    int ret = -1;
    pgd_t *pgd;
    pmd_t *pmd;
    // 根据mm中的pgd和address的高10位取出pgd的值
    // 页目录之占1页,pgd永远是可以取出来的,就是mm->pgd + address<<PGD_SHIT 永远合法地址
    pgd = pgd_offset(mm, address);
    // i386的页式是分两层的,pmd和pgd的值一样,此处直接返回
    pmd = pmd_alloc(pgd, address);
    // 缺页中断发生,pmd和pgd内容一样的,指向pgd页目录的一项,其内容是0,因为此时pte没有分配。
    if (pmd) {
    pte_t * pte = pte_alloc(pmd, address);
    if (pte)
        ret = handle_pte_fault(mm, vma, address, write_access, pte);
    }
    return ret;
}


1)缺页中断过程中分配pte,一次分配一个页面(下次落在这个pte上的地址就不为空了)。

2) set_pmd 把新的pte地址反向填入上一层的pmd。

3)返回page+address,这个address是在pte这一层的偏移。

extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
{
    address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
    unsigned long page = (unsigned long) get_pte_fast();
    if (!page)
    return get_pte_slow(pmd, address);
    // 分配成功一个pte页后,将新页的地址反向添入上一层pmd里
    set_pmd(pmd, __pmd(_PAGE_TABLE + __pa(page)));
    // 返回address在新分配的pte偏移量
    return (pte_t *)page + address;
}


1)因为内存还没分配出来,所以由pte_alloc分配返回的address在pte的偏移上内容是0(指向0).

2) do_swap_page 和mmap相关,暂时跳过。

static inline int handle_pte_fault(struct mm_struct *mm,
                   struct vm_area_struct * vma, unsigned long address,
                   int write_access, pte_t * pte)
{
    pte_t entry;
    spin_lock(&mm->page_table_lock);
    entry = *pte;
    if (!pte_present(entry)) {
    spin_unlock(&mm->page_table_lock);
    if (pte_none(entry))
        return do_no_page(mm, vma, address, write_access, pte);
    return do_swap_page(mm, vma, address, pte, pte_to_swp_entry(entry), write_access);
    }
}


1)do_no_page 处理缺少的页的处理回调。

2)如果是通过mmap的方式要调用文件系统的函数建立映射

3)此处是正常的内存分配,也就是匿名页

static int do_no_page(struct mm_struct * mm, struct vm_area_struct * vma,
              unsigned long address, int write_access, pte_t *page_table)
{
    struct page * new_page;
    pte_t entry;
    if (!vma->vm_ops || !vma->vm_ops->nopage)
    return do_anonymous_page(mm, vma, page_table, write_access, address);
}


1)这一层分配一个页面,反向填入上一层pte的位子上。

static int do_anonymous_page(struct mm_struct * mm, struct vm_area_struct * vma, pte_t *page_table, int write_access, unsigned long addr)
{
    struct page *page = NULL;
    // 先假设申请的页是只读的,映射到zeropage。内核中分配了一个1024的long数组,并初始化为0,所有的只读页都会映射到这个。写的时候发生COW 
    pte_t entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
    if (write_access) {
    // 如果写操作发生,则真真的申请一个物理页
    page = alloc_page(GFP_HIGHUSER);
    if (!page)
        return -1;
    clear_user_highpage(page, addr);
    entry = pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
    mm->rss++;
    flush_page_to_ram(page);
    }
    // 回填pte的指针
    set_pte(page_table, entry);
    update_mmu_cache(vma, addr, entry);
    return 1;
}
相关文章
|
4月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
75 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
9月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
359 77
|
8月前
|
算法 调度 C++
STL——栈和队列和优先队列
通过以上对栈、队列和优先队列的详细解释和示例,希望能帮助读者更好地理解和应用这些重要的数据结构。
186 11
|
8月前
|
DataX
☀☀☀☀☀☀☀有关栈和队列应用的oj题讲解☼☼☼☼☼☼☼
### 简介 本文介绍了三种数据结构的实现方法:用两个队列实现栈、用两个栈实现队列以及设计循环队列。具体思路如下: 1. **用两个队列实现栈**: - 插入元素时,选择非空队列进行插入。 - 移除栈顶元素时,将非空队列中的元素依次转移到另一个队列,直到只剩下一个元素,然后弹出该元素。 - 判空条件为两个队列均为空。 2. **用两个栈实现队列**: - 插入元素时,选择非空栈进行插入。 - 移除队首元素时,将非空栈中的元素依次转移到另一个栈,再将这些元素重新放回原栈以保持顺序。 - 判空条件为两个栈均为空。
|
9月前
|
存储 C++ 索引
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
【数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】初始化队列、销毁队列、判断队列是否为空、进队列、出队列等。本关任务:编写一个程序实现环形队列的基本运算。(6)出队列序列:yzopq2*(5)依次进队列元素:opq2*(6)出队列序列:bcdef。(2)依次进队列元素:abc。(5)依次进队列元素:def。(2)依次进队列元素:xyz。开始你的任务吧,祝你成功!(4)出队一个元素a。(4)出队一个元素x。
274 13
【C++数据结构——栈与队列】环形队列的基本运算(头歌实践教学平台习题)【合集】
|
9月前
|
存储 C语言 C++
【C++数据结构——栈与队列】链栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现链栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储整数,最大
150 9
|
9月前
|
C++
【C++数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】
【数据结构——栈和队列】括号配对(头歌实践教学平台习题)【合集】(1)遇到左括号:进栈Push()(2)遇到右括号:若栈顶元素为左括号,则出栈Pop();否则返回false。(3)当遍历表达式结束,且栈为空时,则返回true,否则返回false。本关任务:编写一个程序利用栈判断左、右圆括号是否配对。为了完成本关任务,你需要掌握:栈对括号的处理。(1)遇到左括号:进栈Push()开始你的任务吧,祝你成功!测试输入:(()))
202 7
|
11月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
314 5
|
11月前
|
算法
数据结构之购物车系统(链表和栈)
本文介绍了基于链表和栈的购物车系统的设计与实现。该系统通过命令行界面提供商品管理、购物车查看、结算等功能,支持用户便捷地管理购物清单。核心代码定义了商品、购物车商品节点和购物车的数据结构,并实现了添加、删除商品、查看购物车内容及结算等操作。算法分析显示,系统在处理小规模购物车时表现良好,但在大规模购物车操作下可能存在性能瓶颈。
253 0

热门文章

最新文章