EL之RF(随机性的Bagging+DTR):利用随机选择属性的bagging方法解决回归(对多变量的数据集+实数值评分预测)问题

简介: EL之RF(随机性的Bagging+DTR):利用随机选择属性的bagging方法解决回归(对多变量的数据集+实数值评分预测)问题

输出结果

image.png

image.png


设计思路


image.pngimage.png

核心代码

for iTrees in range(numTreesMax):

   modelList.append(DecisionTreeRegressor(max_depth=treeDepth))

   #第一个随机:随机抽取属性样本

   idxAttr = random.sample(range(ncols), nAttr)

   idxAttr.sort()

   indexList.append(idxAttr)

   #第二个随机:随机抽取训练行样本

   idxRows = []

   for i in range(int(0.5 * nTrainRows)):

       idxRows.append(random.choice(range(len(xTrain))))

   idxRows.sort()

   xRfTrain = []

   yRfTrain = []

   for i in range(len(idxRows)):

       temp = [xTrain[idxRows[i]][j] for j in idxAttr]

       xRfTrain.append(temp)

       yRfTrain.append(yTrain[idxRows[i]])

   modelList[-1].fit(xRfTrain, yRfTrain)

   xRfTest = []

   for xx in xTest:

       temp = [xx[i] for i in idxAttr]

       xRfTest.append(temp)

   latestOutSamplePrediction = modelList[-1].predict(xRfTest)

   predList.append(list(latestOutSamplePrediction))


相关文章
|
8月前
|
机器学习/深度学习 前端开发 数据可视化
R语言缺失数据变量选择LASSO回归:Bootstrap重(再)抽样插补和推算
R语言缺失数据变量选择LASSO回归:Bootstrap重(再)抽样插补和推算
|
8月前
|
算法 vr&ar Python
R语言隐马尔可夫模型HMM连续序列重要性重抽样CSIR估计随机波动率模型SV分析股票收益率时间序列
R语言隐马尔可夫模型HMM连续序列重要性重抽样CSIR估计随机波动率模型SV分析股票收益率时间序列
|
8月前
样条曲线分段线性回归模型piecewise regression估计个股beta值分析收益率数据
样条曲线分段线性回归模型piecewise regression估计个股beta值分析收益率数据
|
8月前
|
机器学习/深度学习 算法
R语言非参数方法:使用核回归平滑估计和K-NN(K近邻算法)分类预测心脏病数据
R语言非参数方法:使用核回归平滑估计和K-NN(K近邻算法)分类预测心脏病数据
|
8月前
|
数据可视化 Python
PYTHON 贝叶斯概率推断序列数据概率和先验、似然和后验图可视化
PYTHON 贝叶斯概率推断序列数据概率和先验、似然和后验图可视化
|
机器学习/深度学习 算法
概率论--随机事件与概率--贝叶斯公式--随机变量
概率论--随机事件与概率--贝叶斯公式--随机变量
|
算法 数据可视化
DL之GD:利用LogisticGD算法(梯度下降)依次基于一次函数和二次函数分布的数据集实现二分类预测(超平面可视化)
DL之GD:利用LogisticGD算法(梯度下降)依次基于一次函数和二次函数分布的数据集实现二分类预测(超平面可视化)
DL之GD:利用LogisticGD算法(梯度下降)依次基于一次函数和二次函数分布的数据集实现二分类预测(超平面可视化)
EL之Boosting之GB(DTR):利用梯度提升法解决回归(对多变量的数据集+实数值评分预测)问题
EL之Boosting之GB(DTR):利用梯度提升法解决回归(对多变量的数据集+实数值评分预测)问题
EL之Boosting之GB(DTR):利用梯度提升法解决回归(对多变量的数据集+实数值评分预测)问题
EL之Bagging(DTR):利用Bagging对回归问题(实数值评分预测)建模(调2参)
EL之Bagging(DTR):利用Bagging对回归问题(实数值评分预测)建模(调2参)
EL之Bagging(DTR):利用Bagging对回归问题(实数值评分预测)建模(调2参)
EL之Bagging:利用Bagging算法实现回归预测(实数值评分预测)问题
EL之Bagging:利用Bagging算法实现回归预测(实数值评分预测)问题
EL之Bagging:利用Bagging算法实现回归预测(实数值评分预测)问题