Paper之BigGAN:ICLR 2019最新论文《LARGE SCALE GAN TRAINING FOR HIGH FIDELITY NATURAL IMAGE SYNTHESIS》(未完待续)

简介: Paper之BigGAN:ICLR 2019最新论文《LARGE SCALE GAN TRAINING FOR HIGH FIDELITY NATURAL IMAGE SYNTHESIS》(未完待续)

效果


1、炸天的效果(此部分引自量子位)


    效果有多好?先看数字。经过ImageNet上进行128×128分辨率的训练后,BigGAN的Inception Score(IS)得分是166.3,一下子比前人52.52的最佳得分提升了100多分,离真实图像的233分更近了。而Frechet Inception Distance(FID)得分,也从之前的18.65优化到了9.6。


2、再看实例。你能分辨出以下哪张图片是AI生成的假图片,哪张是真实的图片么

image.png



再来一个。以下八张,哪个是假的

image.png



现在公布答案,以上12张,全都是生成的假图片。现在你能理解为什么大家都震惊并且齐声称赞了吧。



论文


论文地址下载:https://openreview.net/pdf?id=B1xsqj09Fm


image.png


摘要



     尽管最近在生成性图像建模方面取得了进展,但是从诸如ImageNet之类的复杂数据集中成功生成高分辨率、多样的样本仍然是一个难以实现的目标。为此,我们训练了迄今为止规模最大的生成性对抗网络,并研究了这种规模特有的不稳定性。我们发现,对生成器应用正交正则化使其能够服从简单的“截断技巧”,允许通过截断潜在空间来精细控制样本保真度和多样性之间的权衡。我们的修改导致模型在类条件图像合成中设置了新的状态。当在ImageNet上以128×128分辨率进行训练时,我们的模型(BigGAN)的初始得分(IS)为166.3,Fre_chet初始距离(FID)为9.6,比之前的最优IS为52.52,FID为18.65。



相关文章
|
2月前
|
机器学习/深度学习 编解码 算法
论文精度笔记(二):《Deep Learning based Face Liveness Detection in Videos 》
论文提出了基于深度学习的面部欺骗检测技术,使用LRF-ELM和CNN两种模型,在NUAA和CASIA数据库上进行实验,发现LRF-ELM在检测活体面部方面更为准确。
27 1
论文精度笔记(二):《Deep Learning based Face Liveness Detection in Videos 》
|
2月前
|
机器学习/深度学习 人工智能 文件存储
【小样本图像分割-3】HyperSegNAS: Bridging One-Shot Neural Architecture Search with 3D Medical Image Segmentation using HyperNet
本文介绍了一种名为HyperSegNAS的新方法,该方法结合了一次性神经架构搜索(NAS)与3D医学图像分割,旨在解决传统NAS方法在3D医学图像分割中计算成本高、搜索时间长的问题。HyperSegNAS通过引入HyperNet来优化超级网络的训练,能够在保持高性能的同时,快速找到适合不同计算约束条件的最优网络架构。该方法在医疗分割十项全能(MSD)挑战的多个任务中展现了卓越的性能,特别是在胰腺数据集上的表现尤为突出。
22 0
【小样本图像分割-3】HyperSegNAS: Bridging One-Shot Neural Architecture Search with 3D Medical Image Segmentation using HyperNet
|
7月前
|
算法 BI 计算机视觉
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
63 1
|
算法 PyTorch 算法框架/工具
论文解读:LaMa:Resolution-robust Large Mask Inpainting with Fourier Convolutions
论文解读:LaMa:Resolution-robust Large Mask Inpainting with Fourier Convolutions
692 0
|
机器学习/深度学习 编解码 人工智能
Text to image综述阅读(2)A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis
这是一篇用GAN做文本生成图像(Text to Image)的综述阅读报告。 综述名为:《A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis》,发表于2019年,其将文本生成图像分类为Semantic Enhancement GANs, Resolution Enhancement GANs, Diversity Enhancement GANs, Motion Enhancement GANs四类,并且介绍了代表性model。
Text to image综述阅读(2)A Survey and Taxonomy of Adversarial Neural Networks for Text-to-Image Synthesis
|
机器学习/深度学习 编解码 自然语言处理
DeIT:Training data-efficient image transformers & distillation through attention论文解读
最近,基于注意力的神经网络被证明可以解决图像理解任务,如图像分类。这些高性能的vision transformer使用大量的计算资源来预训练了数亿张图像,从而限制了它们的应用。
528 0
|
机器学习/深度学习 自然语言处理
【论文精读】COLING 2022 - DESED: Dialogue-based Explanation for Sentence-level Event Detection
最近许多句子级事件检测的工作都集中在丰富句子语义上,例如通过多任务或基于提示的学习。尽管效果非常好,但这些方法通常依赖于标签广泛的人工标注
95 0
|
数据挖掘
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation-ppt版学习笔记
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation-ppt版学习笔记
129 0
|
机器学习/深度学习 传感器 自然语言处理
论文笔记:SpectralFormer Rethinking Hyperspectral Image Classification With Transformers_外文翻译
 高光谱(HS)图像具有近似连续的光谱信息,能够通过捕获细微的光谱差异来精确识别物质。卷积神经网络(CNNs)由于具有良好的局部上下文建模能力,在HS图像分类中是一种强有力的特征提取器。然而,由于其固有的网络骨干网的限制,CNN不能很好地挖掘和表示谱特征的序列属性。
180 0
|
机器学习/深度学习 PyTorch API
CVPR 2017|Deep Feature Flow for Video Recognition论文复现(pytorch版)
<原文>:在中间特征矩阵上应用随机初始化的1 × 1卷积层,得到(C+1)分图,其中C为类别数,1为背景类别。然后通过softmax层输出逐像素概率。因此,任务网络只有一个可学习的权重层。整体网络架构类似于DeepLab
192 0