SQL调优指南—SQL调优进阶—聚合优化和执行

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 本文介绍如何优化器和执行器如何处理聚合(Group-by),以达到减少数据传输量和提高执行效率的效果。

基本概念

聚合操作(Aggregate,简称Agg)语义为按照GROUP BY指定列对输入数据进行聚合的计算,或者不分组、对所有数据进行聚合的计算。PolarDB-X支持如下聚合函数:

  • COUNT
  • SUM
  • AVG
  • MAX
  • MIN
  • BIT_OR
  • BIT_XOR
  • GROUP_CONCAT

聚合(Agg)

本文介绍均为不下推的Agg的实现。如果已被下推到LogicalView中,则由存储层MySQL来选择执行方式,聚合(Agg)由两种主要的算子HashAgg和SortAgg实现。

HashAgg

HashAgg利用哈希表实现聚合:

  1. 根据输入行的分组列的值,通过Hash找到对应的分组。
  2. 按照指定的聚合函数,对该行进行聚合计算。
  3. 重复以上步骤直到处理完所有的输入行,最后输出聚合结果。


> explain select count(*) from t1 join t2 on t1.id = t2.id group by t1.name,t2.name;
Project(count(*)="count(*)")
  HashAgg(group="name,name0", count(*)="COUNT()")
    BKAJoin(condition="id = id", type="inner")
      Gather(concurrent=true)
        LogicalView(tables="t1", shardCount=2, sql="SELECT `id`, `name` FROM `t1` AS `t1`")
      Gather(concurrent=true)
        LogicalView(tables="t2_[0-3]", shardCount=4, sql="SELECT `id`, `name` FROM `t2` AS `t2` WHERE (`id` IN ('?'))")

Explain结果中,HashAgg算子还包含以下关键信息:

  • group:表示GROUP BY字段,示例中为name,name0分别引用t1,t2表的name列,当存在相同别名会通过后缀数字区分 。
  • 聚合函数:等号(=) 前为聚合函数对应的输出列名,其后为对应的计算方法。示例中 count(*)="COUNT()" ,第一个 count(*) 对应输出的列名,随后的COUNT()表示对其输入数据进行计数。

HashAgg对应可以通过Hint来关闭:/*+TDDL:cmd_extra(ENABLE_HASH_AGG=false)*/

SortAgg

SortAgg在输入数据已按分组列排序的情况,对各个分组依次完成聚合。

  • 保证输入按指定的分组列排序(例如,可能会看到 MergeSort 或 MemSort)。
  • 逐行读入输入数据,如果分组与当前分组相同,则对其进行聚合计算。
  • 如果分组与当前分组不同,则输出当前分组上的聚合结果。

相比 HashAgg,SortAgg 每次只要处理一个分组,内存消耗很小;相对的,HashAgg 需要把所有分组存储在内存中,需要消耗较多的内存。


> explain select count(*) from t1 join t2 on t1.id = t2.id group by t1.name,t2.name order by t1.name, t2.name;
Project(count(*)="count(*)")
  MemSort(sort="name ASC,name0 ASC")
    HashAgg(group="name,name0", count(*)="COUNT()")
      BKAJoin(condition="id = id", type="inner")
        Gather(concurrent=true)
          LogicalView(tables="t1", shardCount=2, sql="SELECT `id`, `name` FROM `t1` AS `t1`")
        Gather(concurrent=true)
          LogicalView(tables="t2_[0-3]", shardCount=4, sql="SELECT `id`, `name` FROM `t2` AS `t2` WHERE (`id` IN ('?'))")

SortAgg对应可以通过Hint来关闭:/*+TDDL:cmd_extra(ENABLE_SORT_AGG=false)*/

两阶段聚合优化

两阶段聚合,即通过将Agg拆分为部分聚合(Partial Agg)和最终聚合(Final Agg)的两个阶段,先对部分结果集做聚合,然后将这些部分聚合结果汇总,得到整体聚合的结果。

如下示例的SQL中,HashAgg 中拆分出的部分聚合(PartialAgg)会被下推至MySQL上的各个分表,而其中的AVG函数也被拆分成 SUM和 COUNT 以实现两阶段的计算:


> explain select avg(age) from t2 group by name
Project(avg(age)="sum_pushed_sum / sum_pushed_count")
  HashAgg(group="name", sum_pushed_sum="SUM(pushed_sum)", sum_pushed_count="SUM(pushed_count)")
    Gather(concurrent=true)
      LogicalView(tables="t2_[0-3]", shardCount=4, sql="SELECT `name`, SUM(`age`) AS `pushed_sum`, COUNT(`age`) AS `pushed_count` FROM `t2` AS `t2` GROUP BY `name`")

两阶段聚合的优化能大大减少数据传输量、提高执行效率。

总的来说,大部分场景做聚合的时候都倾向于选择HashAgg,只要当以下场景下才适合选择SortAgg做聚合:

  1. 数据比较多,内存严重不足。
  2. 聚合算子的输入已经按照Group By 列做好排序,这样做SortAgg就不需要额外排序,执行效率会更高。
  3. 当数据有严重倾斜,导致HashAgg执行效率不高,优先使用SortAgg
相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
相关文章
|
8天前
|
SQL 存储 缓存
如何优化SQL查询性能?
【10月更文挑战第28天】如何优化SQL查询性能?
46 10
|
7天前
|
SQL 存储 缓存
SQL Server 数据太多如何优化
11种优化方案供你参考,优化 SQL Server 数据库性能得从多个方面着手,包括硬件配置、数据库结构、查询优化、索引管理、分区分表、并行处理等。通过合理的索引、查询优化、数据分区等技术,可以在数据量增大时保持较好的性能。同时,定期进行数据库维护和清理,保证数据库高效运行。
|
21天前
|
SQL 资源调度 分布式计算
如何让SQL跑快一点?(优化指南)
这篇文章主要探讨了如何在阿里云MaxCompute(原ODPS)平台上对SQL任务进行优化,特别是针对大数据处理和分析场景下的性能优化。
|
29天前
|
SQL 监控 数据库
慢SQL对数据库写入性能的影响及优化技巧
在数据库管理系统中,慢SQL(即执行缓慢的SQL语句)不仅会影响查询性能,还可能对数据库的写入性能产生显著的不利影响
|
1月前
|
SQL 关系型数据库 PostgreSQL
遇到SQL 子查询性能很差?其实可以这样优化
遇到SQL 子查询性能很差?其实可以这样优化
79 2
|
1月前
|
SQL Oracle 关系型数据库
Oracle SQL:了解执行计划和性能调优
Oracle SQL:了解执行计划和性能调优
45 1
|
30天前
|
SQL 存储 数据库
慢SQL对数据库写入性能的影响及优化技巧
在数据库管理系统中,慢SQL(即执行缓慢的SQL语句)不仅会影响查询性能,还可能对数据库的写入性能产生显著的不利影响
|
1月前
|
SQL 数据处理 数据库
SQL语句优化与查询结果优化:提升数据库性能的实战技巧
在数据库管理和应用中,SQL语句的编写和查询结果的优化是提升数据库性能的关键环节
|
SQL 存储 关系型数据库
SQL调优指南—SQL调优进阶—聚合优化和执行
本文介绍如何优化器和执行器如何处理聚合(Group-by),以达到减少数据传输量和提高执行效率的效果。
168 0
|
2月前
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
下一篇
无影云桌面