最佳实践—如何选择实例规格

简介: 实例规格越高代表实例的性能越强,本文介绍了选择实例规格的方法。PolarDB-X实例主要由计算节点和存储节点联合提供服务,单个节点按照CPU/MEM来划分实例的多种规格,多个节点一起组成PolarDB-X实例。实例规格请参见规格说明。

节点规格类型

系列 规格码 CPU和内存 最大存储 最大连接数 最大IOPS 特点
通用 polarx.x4.medium.2e 2核8G 3072GB 20000 4000 定位入门级,用于测试、体验和极小负载的场景。
polarx.x4.large.2e 4核16G 3072GB 20000 7000 CPU和MEM配比为1:4,复用计算资源享受规模红利,性价比高。
polarx.x4.xlarge.2e 8核32G 3072GB 20000 12000
polarx.x4.2xlarge.2e 16核64G 3072GB 20000 14000
独享 polarx.x8.large.2e 4核32G 3072GB 20000 9000 CPU和MEM配比为1:8,独占分配到的计算资源(如CPU),性能表现更加稳定。
polarx.x8.xlarge.2e 8核64G 3072GB 20000 18000
polarx.x8.2xlarge.2e 16核128G 3072GB 20000 36000
polarx.x8.4xlarge.2e 32核128G 3072GB 20000 36000
polarx.x8.4xlarge.2e 32核256G 3072GB 20000 72000
独占 polarx.st.8xlarge.25 60核470G 6144GB 20000 120000 独占物理机规格,可以有更好的资源使用保障。
polarx.st.12xlarge.25 90核720G 6144GB 20000 140000

实例规格=节点数×节点规格 (计算节点+存储节点)

举例如下:

polarx.x8.xlarge.2e独享规格,节点数为2个,性能数据如下:存储6TB (3072GB×2)、连接数40000 (20000×2)、最大IOPS 36000 (18000×2)。

按照存储容量选择

按照业务的存储空间估算逻辑:

  1. 业务的数据存储会随着时间而持续增加,可以预估1~2年内的业务增长量,判断需要的最大存储空间。
  2. PolarDB-X的数据存储分为:数据空间、系统文件空间、日志空间等,比较建议单节点的存储使用量保持在70%以下。

示例:

当前业务的存储空间为1500GB,每天新增约10GB,按照1年的业务预估来看,总计约5150GB的存储。按照使用量70%来计算,预估需要5150GB / 0.7 = 7357GB的存储空间诉求,如果按照独享规格polarx.x8.xlarge.2e (节点存储上限3TB),最后判断需要CEILING(7357GB/3072GB) = CEILING(2.39) = 3个节点。

按照并发量选择

按照业务的并发量的估算逻辑:

  1. PolarDB-X的节点规格资源限制,包含CPU、MEM、连接数、IOPS等。在面向事务型场景下,一般比较常见是CPU瓶颈为主,可通过业务的QPS预期进行估算和推导。
  2. 按照常见的sysbench/TPC-C的偏交易混合读写场景,单core估算可支持的QPS为1000~3000,按照独享规格polarx.x8.xlarge.2e单节点预估可支持1~2万的QPS。
    说明 业务的流量模型和通用benchmark会有比较多的差异,单节点的QPS仅供估算参考,比较建议基于业务流量进行实际压测。
  3. 常规的峰值流量,PolarDB-X建议单节点的资源使用量保持在70%以下。

示例:

当前业务的QPS峰值预估为10万QPS,预留70%的资源余量,预计需要支持14万QPS的资源,按照PolarDB-X单节点支持2万的能力来估算,预估需要7个节点。

按照多维度组合选择

示例:

当前业务的QPS峰值预估为10万QPS,当前业务的存储空间为1500GB,每天新增约10GB,按照1年的业务预估来看,总计约5150GB的存储。

建议的选择逻辑:

  1. 分布式数据库由多个节点组成,会有类似的木桶效应,比如突发流量导致个别节点达到资源瓶颈,会导致整体实例出现部分慢SQL的现象。因此,节点规格推荐独享型,建议生产环境8核64G起步,默认存储空间有3072GB(3TB)。
  2. 分别按照存储容量和并发量分别估算需要的节点数和CPU规格,比如例子中需要CPU 56核、存储7357GB,可以按照最小覆盖原则进行计算。存储空间最小需要3个节点覆盖,PolarDB-X提供了存储包的按量付费模式,存储需要的节点数可以作为下限,上限可以选择CPU核数的最小覆盖,可以选择7个节点的8核64G或4个节点的16核128G。
  3. 业务流量如果包含报表分析的场景,因涉及更多数据计算的代价,建议选择4个节点的16核128G,优先大节点规格,提高木桶边的上限。另外的场景下,建议选择7个节点的8核64G,更多的节点数可以支撑更大的存储空间,未来实例规格的升配也优先建议升配单个节点规格。
相关文章
|
关系型数据库 MySQL 数据库
mysql卸载、下载、安装(window版本)
mysql卸载、下载、安装(window版本)
203 1
|
Linux
linux(二十八)磁盘管理类命令df、du和free查看磁盘和目录空间占用
linux(二十八)磁盘管理类命令df、du和free查看磁盘和目录空间占用
437 0
|
12月前
|
SQL 安全 数据库
如何在Django中正确使用参数化查询或ORM来避免SQL注入漏洞?
如何在Django中正确使用参数化查询或ORM来避免SQL注入漏洞?
700 77
|
人工智能 弹性计算 搜索推荐
打造个性化的微信公众号AI小助手:从人设到工作流程
在数字化时代,一个有个性且功能强大的AI小助手能显著提升用户体验。本文档指导如何在微信公众号上设置AI小助手“小智”,涵盖其人设、功能规划及工作流程设计,旨在打造一个既智能又具吸引力的AI伙伴。
1132 0
|
消息中间件 负载均衡 Java
Java微服务通讯方式有哪些?
【8月更文挑战第18天】Java微服务通讯方式有哪些?
359 1
|
机器学习/深度学习 人工智能 自然语言处理
从平凡到非凡:借AI风口普通人如何起飞?
雷军曾说:“站在风口上,猪也能飞上天。”而AI无疑是当前最强劲的风口。本文介绍了如何抓住AI时代的机遇,包括理解AI基础概念、选择合适的AI工具、将AI融入工作提升效率,以及利用AI创造被动收入。通过这些步骤,你将能够在AI浪潮中获得成功。
656 0
从平凡到非凡:借AI风口普通人如何起飞?
|
缓存 数据挖掘 大数据
阿里云服务器通用算力型u1与经济型e实例详细对比与选择参考
在阿里云丰富的云服务器实例规格中,通用算力型u1和经济型e实例的云服务器相对于其他实例规格来说,活动价格相对更低的两个云服务器实例,由于经济型e实例是共享型实例规格,而通用算力型u1实例是独享型实例规格,因此,有的用户比较关心阿里云通用算力型u1云服务器怎么样?本文将为您介绍这两款云服务器的区别、性能特点、适用场景及价格对比,为用户的选购决策提供全面参考。
阿里云服务器通用算力型u1与经济型e实例详细对比与选择参考
|
人工智能 云栖大会
2024云栖大会,我们来了!
2024云栖大会亮点介绍
779 1
|
安全 网络架构
什么是 ESS?
【8月更文挑战第24天】
2611 0
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的突破与挑战:探索未来技术前沿
本文深入探讨了深度学习领域的最新进展、面临的主要挑战以及未来的发展趋势。文章首先介绍了深度学习的基本概念和应用领域,然后详细分析了当前深度学习技术的关键问题,包括数据依赖性、模型泛化能力、计算资源需求等。最后,文章展望了深度学习的未来发展方向,如模型可解释性、小样本学习、跨模态学习等,旨在为读者提供对深度学习领域全面而深入的理解。