ML之k-NN:k-NN实现对150朵共三种花的实例的萼片长度、宽,花瓣长、宽数据统计,根据一朵新花的四个特征来预测其种类

简介: ML之k-NN:k-NN实现对150朵共三种花的实例的萼片长度、宽,花瓣长、宽数据统计,根据一朵新花的四个特征来预测其种类

输出结果

image.png

实现代码

from sklearn import neighbors  

from sklearn import datasets  

knn = neighbors.KNeighborsClassifier()

iris = datasets.load_iris()  

print (iris)

knn.fit(iris.data, iris.target)

predictedLabel = knn.predict([[0.1, 0.2, 0.3, 0.4]])

print ("niu")

print (predictedLabel)


相关文章
|
8月前
|
数据可视化
R语言生态学进化树推断物种分化历史:分类单元数与时间关系、支系图可视化
R语言生态学进化树推断物种分化历史:分类单元数与时间关系、支系图可视化
R语言生态学进化树推断物种分化历史:分类单元数与时间关系、支系图可视化
|
8月前
|
数据可视化 算法 数据挖掘
用有限混合模型(FMM,FINITE MIXTURE MODEL)创建衰退指标对股市SPY、ETF收益聚类双坐标图可视化
用有限混合模型(FMM,FINITE MIXTURE MODEL)创建衰退指标对股市SPY、ETF收益聚类双坐标图可视化
|
8月前
|
数据可视化
R语言两阶段最小⼆乘法2SLS回归、工具变量法分析股息收益、股权溢价和surfaces曲面图可视化
R语言两阶段最小⼆乘法2SLS回归、工具变量法分析股息收益、股权溢价和surfaces曲面图可视化
|
8月前
|
数据可视化 测试技术
R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例
R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例
|
机器学习/深度学习 数据可视化 计算机视觉
0参数量 + 0训练,3D点云分析方法Point-NN刷新多项SOTA(1)
0参数量 + 0训练,3D点云分析方法Point-NN刷新多项SOTA
142 0
|
机器学习/深度学习 数据可视化 数据挖掘
0参数量 + 0训练,3D点云分析方法Point-NN刷新多项SOTA(2)
0参数量 + 0训练,3D点云分析方法Point-NN刷新多项SOTA
305 0
|
数据挖掘 Serverless
Robust火山图:一种含离群值的代谢组数据差异分析方法
代谢组学中差异代谢物的识别仍然是一个巨大的挑战,并在代谢组学数据分析中发挥着突出的作用。由于分析、实验和生物的模糊性,代谢组学数据集经常包含异常值,但目前可用的差异代谢物识别技术对异常值很敏感。作者这里提出了一种基于权重的具有稳健性火山图方法,助于从含有离群值的代谢组数据中更加准确鉴定差异代谢物。
260 0
三维之外的更高维度,数学家发现了无限可能的黑洞形状
三维之外的更高维度,数学家发现了无限可能的黑洞形状
167 0
|
传感器 编解码 算法
Google Earth Engine ——MOD16A2第6版蒸发/热量通量产品是一个以500米像素分辨率制作的8天综合产品,两个潜热层(LE和PLE)的像素值是综合期内所有8天的平均值500m分辨
Google Earth Engine ——MOD16A2第6版蒸发/热量通量产品是一个以500米像素分辨率制作的8天综合产品,两个潜热层(LE和PLE)的像素值是综合期内所有8天的平均值500m分辨
584 0
Google Earth Engine ——MOD16A2第6版蒸发/热量通量产品是一个以500米像素分辨率制作的8天综合产品,两个潜热层(LE和PLE)的像素值是综合期内所有8天的平均值500m分辨
|
编解码 定位技术
Google Earth Engine——流域边界数据集 (WBD) 是水文单位 (HU) 数据的综合汇总集合,与国家划定和分辨率标准一致。它定义了地表水排放到某个点的区域范围
Google Earth Engine——流域边界数据集 (WBD) 是水文单位 (HU) 数据的综合汇总集合,与国家划定和分辨率标准一致。它定义了地表水排放到某个点的区域范围
382 0
Google Earth Engine——流域边界数据集 (WBD) 是水文单位 (HU) 数据的综合汇总集合,与国家划定和分辨率标准一致。它定义了地表水排放到某个点的区域范围