Google Earth Engine ——MOD16A2第6版蒸发/热量通量产品是一个以500米像素分辨率制作的8天综合产品,两个潜热层(LE和PLE)的像素值是综合期内所有8天的平均值500m分辨

简介: Google Earth Engine ——MOD16A2第6版蒸发/热量通量产品是一个以500米像素分辨率制作的8天综合产品,两个潜热层(LE和PLE)的像素值是综合期内所有8天的平均值500m分辨

The MOD16A2 Version 6 Evapotranspiration/Latent Heat Flux product is an 8-day composite product produced at 500 meter pixel resolution. The algorithm used for the MOD16 data product collection is based on the logic of the Penman-Monteith equation, which includes inputs of daily meteorological reanalysis data along with MODIS remotely sensed data products such as vegetation property dynamics, albedo, and land cover.

The pixel values for the two Evapotranspiration layers (ET & PET) are the sum of all eight days within the composite period. The pixel values for the two Latent Heat layers (LE & PLE) are the average of all eight days within the composite period. Note that the last 8-day period of each year is a 5 or 6-day composite period, depending on the year.

According to the "Layers" section of the dataset docs, the class assignment in fill values 32761 through 32767 might be inaccurate. They are not included in the EE assets.

Documentation:


MOD16A2第6版蒸发/热量通量产品是一个以500米像素分辨率制作的8天综合产品。用于MOD16数据产品收集的算法是基于Penman-Monteith方程的逻辑,其中包括每日气象再分析数据的输入,以及MODIS遥感数据产品,如植被属性动态、反照率和土地覆盖。

两个蒸散层(ET和PET)的像素值是综合期内所有8天的总和。两个潜热层(LE和PLE)的像素值是综合期内所有8天的平均值。请注意,每年的最后8天是一个5或6天的综合期,这取决于年份。

根据数据集文档的 "层 "部分,填充值32761到32767中的类别分配可能是不准确的。它们不包括在EE资产中。

Dataset Availability

2001-01-01T00:00:00 - 2021-09-06T00:00:00

Dataset Provider

NASA LP DAAC at the USGS EROS Center

Collection Snippet

ee.ImageCollection("MODIS/006/MOD16A2")

Resolution

500 meters

Bands Table

Name Description Min Max Units Scale
ET Total evapotranspiration -32767 32700 kg/m^2/8day 0.1
LE Average latent heat flux -32767 32700 J/m^2/day 10000
PET Total potential evapotranspiration -32767 32700 kg/m^2/8day 0.1
PLE Average potential latent heat flux -32767 32700 J/m^2/day 10000
ET_QC Evapotranspiration quality control flags 0
ET_QC Bitmask
  • Bit 0: MODLAND_QC bits
    • 0: Good quality (main algorithm with or without saturation)
    • 1: Other quality (back-up algorithm or fill values)
  • Bit 1: Sensor
    • 0: Terra
    • 1: Aqua
  • Bit 2: Dead detector
    • 0: Detectors apparently fine for up to 50% of channels 1, 2
    • 1: Dead detectors caused >50% adjacent detector retrieval
  • Bits 3-4: Cloud state
    • 0: Significant clouds NOT present (clear)
    • 1: Significant clouds WERE present
    • 2: Mixed cloud present on pixel
    • 3: Cloud state not defined, assumed clear
  • Bits 5-7: SCF_QC 5-level confidence quality score
    • 0: Main (RT) method used, best result possible (no saturation)
    • 1: Main (RT) method used with saturation. Good, very usable
    • 2: Main (RT) method failed due to bad geometry, empirical algorithm used
    • 3: Main (RT) method failed due to problems other than geometry, empirical algorithm used
    • 4: Pixel not produced at all, value couldn't be retrieved (possible reasons: bad L1B data, unusable MOD09GA data)

使用说明:

MODIS data and products acquired through the LP DAAC have no restrictions on subsequent use, sale, or redistribution.

数据引用:

LP DAAC - MOD16A2

代码:

var dataset = ee.ImageCollection('MODIS/006/MOD16A2')
                  .filter(ee.Filter.date('2018-01-01', '2018-05-01'));
var evapotranspiration = dataset.select('ET');
var evapotranspirationVis = {
  min: 0.0,
  max: 300.0,
  palette: [
    'ffffff', 'fcd163', '99b718', '66a000', '3e8601', '207401', '056201',
    '004c00', '011301'
  ],
};
Map.setCenter(6.746, 46.529, 2);
Map.addLayer(evapotranspiration, evapotranspirationVis, 'Evapotranspiration');



相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2691 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
251 0
|
7月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
662 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
7月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
124 0
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
101 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
165 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
88 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
291 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
148 0
|
7月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
136 0