DL:深度学习(神经网络)的简介、基础知识(神经元/感知机、训练策略、预测原理)、算法分类、经典案例应用之详细攻略-阿里云开发者社区

开发者社区> 一个处女座的程序猿> 正文

DL:深度学习(神经网络)的简介、基础知识(神经元/感知机、训练策略、预测原理)、算法分类、经典案例应用之详细攻略

简介: DL:深度学习(神经网络)的简介、基础知识(神经元/感知机、训练策略、预测原理)、算法分类、经典案例应用之详细攻略
+关注继续查看

6、神经网络学习


(1)、通过调整神经元的参数,使得网络对给定输入可产生期望输出。


image.png


(2)、学习层次化的表示(表征)


   image.png



7、神经网络的前馈运算与反向传播


前馈运算和反向传播:在训练网络过程中所使用的。如果经过训练模型,网络稳定下来以后,就可以把参数固定下来,此时就不再需要反向传播了,只需要前馈运算进行推理和预测即可!



image.png



8、激活函数


DL学习—AF:理解机器学习中常用的激活函数(sigmoid、softmax等)简介、应用、计算图实现、代码实现详细攻略


深度学习(神经网络)的算法分类


        深度学习的形式包括多层感知器、卷积神经网络、循环神经网络、深度置信网络和其它混合构筑  。

         前馈神经网络(NN),而是和循环神经网络(RNN)的概念是相对的。而反向传播方法可以用在FF网络中,此时,基于反向传播算法的前馈神经网络,被称为BP神经网络。


1、常用的神经网络模型概览


DL:神经网络所有模型(包括DNN、CNN、RNN等)的简介(概览)、网络结构简介、使用场景对比之详细攻略


1、DNN

DL之DNN:DNN深度神经网络算法的简介、相关论文、设计思路、关键步骤、实现代码等配图集合之详细攻略


2、CNN

DL之CNN:计算机视觉卷积神经网络算法CNN算法常见结构、发展、CNN优化技术、案例应用之详细攻略


3、RNN

DL之RNN:RNN算法的简介、相关论文、相关思路、关键步骤、配图集合+TF代码定义之详细攻略


4、DBN



深度学习(神经网络)的经典案例应用


后期更新……

————————————————

版权声明:本文为CSDN博主「一个处女座的程序猿」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blog.csdn.net/qq_41185868/article/details/78939050

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
【双11背后的技术】基于深度强化学习与自适应在线学习的搜索和推荐算法研究
作者:灵培、霹雳、哲予 1. 搜索算法研究与实践 1.1 背景 淘宝的搜索引擎涉及对上亿商品的毫秒级处理响应,而淘宝的用户不仅数量巨大,其行为特点以及对商品的偏好也具有丰富性和多样性。因此,要让搜索引擎对不同特点的用户作出针对性的排序,并以此带动搜索引导的成交提升,是一个极具挑战性的问题。传统
10204 0
一文详解神经网络 BP 算法原理及 Python 实现
  什么是梯度下降和链式求导法则 假设我们有一个函数 J(w),如下图所示。 梯度下降示意图 现在,我们要求当 w 等于什么的时候,J(w) 能够取到最小值。从图中我们知道最小值在初始位置的左边,也就意味着如果想要使 J(w) 最小,w的值需要减小。
2598 0
深度学习Trick——用权重约束减轻深层网络过拟合|附(Keras)实现代码
深度学习小技巧,约束权重以降低模型过拟合的可能,附keras实现代码。
1556 0
mongoose学习笔记1--基础知识1
今天我们将学习Mongoose,什么是Mongoose呢,它于MongoDB又是什么关系呢,它可以用来做什么呢? MongoDB是一个开源的NoSQL数据库,相比MySQL那样的关系型数据库,它更显得轻巧、灵活,非常适合在数据规模很大、事务性不强的场合下使用。
1165 0
新颖训练方法——用迭代投影算法训练神经网络
本文介绍了一种利用迭代投影算法对神经网络进行训练的方法,首先介绍了交替投影的基础知识,说明投影方法是寻找非凸优化问题解决方案的一种有效方法;之后介绍了差异图的基础知识,将差异图与一些其他算法相结合使得差分映射算法能够收敛于一个好的解决方案;当投影的情况变多时,介绍了分治算法,最后将迭代投影算法应用到神经网络训练中,给出的例子实验结果表明效果不错。
6817 0
Netflix开源面向稀疏数据优化的轻量级神经网络库Vectorflow
在Netflix公司,我们的机器学习科学家在多个不同的领域处理着各种各样的问题:从根据你的爱好来定制电视和推荐电影,到优化编码算法。我们有一小部分问题涉及到处理极其稀疏的数据;手头问题的总维度数很容易就能达到数千万个特征,即使每次要看的可能只是少数的非零项。
4172 0
基于投票的热门计数算法策略
类似基于投票的热门计数算法普遍应用在热门文章,热门评论等场景中, 典型的比如网易和今日头条的评论区,国外比如Hacker News和Reddit的主题排序。
3323 0
+关注
一个处女座的程序猿
国内互联网圈知名博主、人工智能领域优秀创作者,全球最大中文IT社区博客专家、CSDN开发者联盟生态成员、中国开源社区专家、华为云社区专家、51CTO社区专家、Python社区专家等,曾受邀采访和评审十多次。仅在国内的CSDN平台,博客文章浏览量超过2500万,拥有超过57万的粉丝。
1701
文章
0
问答
文章排行榜
最热
最新
相关电子书
更多
文娱运维技术
立即下载
《SaaS模式云原生数据仓库应用场景实践》
立即下载
《看见新力量:二》电子书
立即下载