【直播预告】表格存储10年沉淀,发布物联网存储 IoTstore

本文涉及的产品
对象存储 OSS,20GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
文件存储 NAS,50GB 3个月
简介: 【直播预告】表格存储10年沉淀,发布物联网存储 IoTstore

【行业背景】
万物互联时代,物联网浪潮推动着能源、汽车、物流、零售,制造等行业进行数字化转型,加速业务创新的同时,日益复杂的架构和庞大的数据量也带来了更多的挑战。基于阿里云表格存储打造的物联网数据存储方案,为物联网设备元数据、消息数据、时序轨迹等海量数据提供存储、查询、检索、分析、同步等能力,不仅具备多样性的数据整合处理能力,同时为物联网海量存储场景提供了低成本高性能的数据存储方案。

【精彩看点抢先知】
行业趋势:专家解读物联网发展的趋势与挑战
重磅发布:表格存储10年沉淀打造物联网存储
技术解读:5大核心技术助力物联网产业升级
最佳实践:行业标杆客户分享应用与实践心得

发布会直播间:https://yqh.aliyun.com/live/iotstorage
相关资料下载:https://page.aliyun.com/form/act1349939144/index.htm
专家服务支持:https://page.aliyun.com/form/act1253643917/index.htm

物联网数据存储发布会(8.23).jpg
讲师海报2.jpg
讲师海报3.jpg
讲师海报.jpg
讲师海报5.jpg
讲师海报4.jpg

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
相关文章
|
30天前
|
存储 人工智能 NoSQL
Tablestore深度解析:面向AI场景的结构化数据存储最佳实践
《Tablestore深度解析:面向AI场景的结构化数据存储最佳实践》由阿里云专家团队分享,涵盖Tablestore十年发展历程、AI时代多模态数据存储需求、VCU模式优化、向量检索发布及客户最佳实践等内容。Tablestore支持大规模在线数据存储,提供高性价比、高性能和高可用性,特别针对AI场景进行优化,满足结构化与非结构化数据的统一存储和高效检索需求。通过多元化索引和Serverless弹性VCU模式,助力企业实现低成本、灵活扩展的数据管理方案。
65 12
|
存储 消息中间件 监控
Tablestore 物联网存储全面升级 -- 分析存储公测
物联网存储功能介绍随着物联网技术的快速发展,物联网已广泛应用于制造业、能源、建筑、医疗、交通、物流仓储等多个领域,物联网的应用能够有效节约资源、提高效率、保障安全以及降低成本,帮助各行业实现可持续发展目标。在物联网场景中根据数据特点进行分类,数据主要包括设备元数据、设备消息数据和设备时序数据三种类型,不同类型数据的存储需求不同。物联网场景中不同类型数据的存储核心需求如下:设备元数据:主要数据为设备
299 0
Tablestore 物联网存储全面升级 -- 分析存储公测
|
存储 人工智能 达摩院
带你读《云存储应用白皮书》之29:2. 物联网大数据存储解决方案
带你读《云存储应用白皮书》之29:2. 物联网大数据存储解决方案
343 1
|
存储 SQL 传感器
基于物联网平台的车辆时序数据存储实践
物联网平台 + Tablestore 时序表解决车联网中时序数据存储场景、需求。
951 15
|
SQL 存储 监控
表格存储物联网时序模型介绍
表格存储的时序模型是针对时间序列数据的特点进行设计,适用于物联网设备监控、设备采集数据、机器监控数据等场景。自21年9月公测,经过长时间打磨,功能已经正式商业化。本文简单介绍表格存储时序模型优势、特点以及数据建模建议。
849 15
表格存储物联网时序模型介绍
|
9月前
|
存储 NoSQL 关系型数据库
基于Tablestore 实现海量订单日志数据存储
从最早的互联网高速发展、到移动互联网的爆发式增长,再到今天的产业互联网、物联网的快速崛起,各种各样新应用、新系统产生了众多订单类型的需求,比如电商购物订单、银行流水、运营商话费账单、外卖订单、设备信息等,产生的数据种类和数据量越来越多;其中订单系统就是一个非常广泛、通用的系统。而随着数据规模的快速增长、大数据技术的发展、运营水平的不断提高,包括数据消费的能力要求越来越高,这对支撑订单系统的数据库设计、存储系统也提出了更多的要求。在新的需求下,传统的经典架构面临着诸多挑战,需要进一步思考架构优化,以更好支撑业务发展。
319 0
基于Tablestore 实现海量订单日志数据存储
|
存储 SQL 传感器
基于 Tablestore 时序存储的物联网数据存储方案
背景物联网时序场景是目前最火热的方向之一。海量的时序数据如汽车轨迹数据、汽车状态监控数据、传感器实时监控数据需要存放进入数据库。一般这类场景下存在如下需求数据高写入,低读取需要对写入数据进行基础的图表展示对写入数据进行聚合分析传统的关系型数据库并不适合此类场景,时序数据库脱颖而出。表格存储时序实例支持时序数据的存储,其具有如下特点:Serverless,分布式,低成本高写入支持优秀的索引能力对数据
1633 0
基于 Tablestore 时序存储的物联网数据存储方案
|
存储 物联网 Android开发
Android物联网应用程序开发(智慧城市)—— 购物信息的存储界面开发
Android物联网应用程序开发(智慧城市)—— 购物信息的存储界面开发
445 0
Android物联网应用程序开发(智慧城市)—— 购物信息的存储界面开发
|
存储 SQL NoSQL
海量结构化数据存储技术揭秘:Tablestore存储和索引引擎详解
海量结构化数据存储技术揭秘:Tablestore存储和索引引擎详解
440 0
海量结构化数据存储技术揭秘:Tablestore存储和索引引擎详解
|
存储 SQL 运维
基于Tablestore 实现大规模订单系统海量订单/日志数据分类存储的实践
前言:从最早的互联网高速发展、到移动互联网的爆发式增长,再到今天的产业互联网、物联网的快速崛起,各种各样新应用、新系统产生了众多订单类型的需求,比如电商购物订单、银行流水、运营商话费账单、外卖订单、设备信息等,产生的数据种类和数据量越来越多;其中订单系统就是一个非常广泛、通用的系统。而随着数据规模的快速增长、大数据技术的发展、运营水平的不断提高,包括数据消费的能力要求越来越高,这对支撑订单系统的数据库设计、存储系统也提出了更多的要求。在新的需求下,传统的经典架构面临着诸多挑战,需要进一步思考架构优化,以更好支撑业务发展;
850 0
基于Tablestore 实现大规模订单系统海量订单/日志数据分类存储的实践