TensorFlow 2 quickstart for experts

简介: TensorFlow 2 quickstart for experts

Import TensorFlow into your program:

import tensorflow as tf

from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model

Load and prepare the MNIST dataset.

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

# Add a channels dimension
x_train = x_train[..., tf.newaxis].astype("float32")
x_test = x_test[..., tf.newaxis].astype("float32")

Use tf.data to batch and shuffle the dataset:

train_ds = tf.data.Dataset.from_tensor_slices(
    (x_train, y_train)).shuffle(10000).batch(32)

test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

Build the tf.keras model using the Keras model subclassing API:

class MyModel(Model):
  def __init__(self):
    super(MyModel, self).__init__()
    self.conv1 = Conv2D(32, 3, activation='relu')
    self.flatten = Flatten()
    self.d1 = Dense(128, activation='relu')
    self.d2 = Dense(10)

  def call(self, x):
    x = self.conv1(x)
    x = self.flatten(x)
    x = self.d1(x)
    return self.d2(x)

# Create an instance of the model
model = MyModel()

Choose an optimizer and loss function for training:

loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

optimizer = tf.keras.optimizers.Adam()

Select metrics to measure the loss and the accuracy of the model. These metrics accumulate the values over epochs and then print the overall result.

train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')

test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')

Use tf.GradientTape to train the model:

@tf.function
def train_step(images, labels):
  with tf.GradientTape() as tape:
    # training=True is only needed if there are layers with different
    # behavior during training versus inference (e.g. Dropout).
    predictions = model(images, training=True)
    loss = loss_object(labels, predictions)
  gradients = tape.gradient(loss, model.trainable_variables)
  optimizer.apply_gradients(zip(gradients, model.trainable_variables))

  train_loss(loss)
  train_accuracy(labels, predictions)

Test the model:

@tf.function
def test_step(images, labels):
  # training=False is only needed if there are layers with different
  # behavior during training versus inference (e.g. Dropout).
  predictions = model(images, training=False)
  t_loss = loss_object(labels, predictions)

  test_loss(t_loss)
  test_accuracy(labels, predictions)
EPOCHS = 5for epoch in range(EPOCHS):  # Reset the metrics at the start of the next epoch  train_loss.reset_states()  train_accuracy.reset_states()  test_loss.reset_states()  test_accuracy.reset_states()  for images, labels in train_ds:    train_step(images, labels)  for test_images, test_labels in test_ds:    test_step(test_images, test_labels)  print(    f'Epoch {epoch + 1}, '    f'Loss: {train_loss.result()}, '    f'Accuracy: {train_accuracy.result() * 100}, '    f'Test Loss: {test_loss.result()}, '    f'Test Accuracy: {test_accuracy.result() * 100}'  )

The image classifier is now trained to ~98% accuracy on this dataset

代码链接: https://codechina.csdn.net/csdn_codechina/enterprise_technology/-/blob/master/CV_Classification/TensorFlow%202%20quickstart%20for%20experts.ipynb

目录
相关文章
|
2月前
|
并行计算 TensorFlow 算法框架/工具
tensorflow安装
tensorflow安装——GPU版
51 2
|
7月前
|
机器学习/深度学习 TensorFlow API
TensorFlow 2.0 快速入门指南:第一部分
TensorFlow 2.0 快速入门指南:第一部分
208 0
|
7月前
|
机器学习/深度学习 存储 TensorFlow
TensorFlow 2.0 快速入门指南:第三部分
TensorFlow 2.0 快速入门指南:第三部分
206 0
|
7月前
|
机器学习/深度学习 算法 TensorFlow
TensorFlow 2.0 快速入门指南:第二部分
TensorFlow 2.0 快速入门指南:第二部分
75 0
|
机器学习/深度学习 JSON 算法
TensorFlow Serving使用指南
TensorFlow Serving使用指南
520 0
|
机器学习/深度学习 算法 Java
TensorFlow Lite介绍
TensorFlow Lite是为了解决TensorFlow在移动平台和嵌入式端过于臃肿而定制开发的轻量级解决方案,是与TensorFlow完全独立的两个项目,与TensorFlow基本没有代码共享。TensorFlow本身是为桌面和服务器端设计开发的,没有为ARM移动平台定制优化,因此如果直接用在移动平台或者嵌入式端会“水土不服”。
517 0
|
TensorFlow 算法框架/工具 Python
Python安装Tensorflow
Python安装Tensorflow
131 0
|
TensorFlow 算法框架/工具 Python
TensorFlow 2 quickstart for beginners
This short introduction uses Keras to: 1. Build a neural network that classifies images. 2. Train this neural network. 3. And, finally, evaluate the accuracy of the model.
184 0
|
TensorFlow 算法框架/工具 Python
TensorFlow Recommenders: Quickstart
In this tutorial, we build a simple matrix factorization model using the MovieLens 100K dataset with TFRS. We can use this model to recommend movies for a given user.
249 0
|
算法 TensorFlow 算法框架/工具
Tensorflow源码解析6 -- TensorFlow本地运行时
# 1 概述 TensorFlow后端分为四层,运行时层、计算层、通信层、设备层。运行时作为第一层,实现了session管理、graph管理等很多重要的逻辑,是十分关键的一层。根据任务分布的不同,运行时又分为本地运行时和分布式运行时。本地运行时,所有任务运行于本地同一进程内。而分布式运行时,则允许任务运行在不同机器上。 Tensorflow的运行,通过session搭建了前后端沟通的桥
3193 0