UPS如何用大数据优化送货路线

简介:

快递司机一天中几乎有无数条路线可供选择。对UPS这样的巨头来说,如果每位司机每天少开一英里,公司便能省下5,000万美元。因此它利用大数据分析打造了一个名为Orion的导航系统,可以在约3秒内找出最佳路线。


在任何一天中,UPS的司机都有许多条快递路线可以选择。


或者换个说法——UPS的司机在任何一天中,可以选择的快递路线的数目都是令人难以想象的。这绝不是夸张。这家快递公司的司机一般每天要送120至175次货。在任何两个目的地之间,都可以选择多条路线。显然,司机和UPS想要找到其中最有效率的那条。不过如此一来,事情就变得复杂了。UPS利用组合数学的算法得出,以上所述的情景中所有可能的线路的总数,是一个199位的数字。这一数字甚至大过了换算成纳秒单位的地球年龄。UPS的流程管理高级总监杰克•里维斯表示:“这数字太大了,令人难以想象。你只能从分析学上得出一个概念。”对UPS而言,这是一项庞大的挑战。不过他们有强烈的动力去实现路线最优化:如果每位司机每天少开一英里,公司便能省下5,000万美元。


这家位于亚特兰大的公司是如何做的?他们研发了一个名为Orion的系统,这是道路优化与导航集成系统(On-Road Integrated Optimization and Navigation)的缩写,也是希腊神话中猎户座的名字。如果说现在有什么大数据分析学上的成就的话,那就是它了。Orion的算法诞生于21世纪初,并于2009年开始试运行。该系统的代码长达1,000页,可以分析每种实时路线的20万种可能性,并能在大约3秒内找出最佳路线。里维斯表示:“起初,数学家们认为可能需要15分钟才能算出结果。所以他们很高兴。”


UPS正在公司全部的5.5万条北美快递线路上装配这一系统。到2013年底,Orion已经在大约1万条线路上得到使用,这让公司节省了150万加仑燃料,少排放了1.4万立方公吨的二氧化碳。公司计划在2017年彻底实现该计划。


根据高德纳研究公司(Gartner)的分析师斯维特拉娜•西库勒的说法,有两个“很不起眼的”行业正在受到大数据的冲击,一个是运输业,其中包括UPS这类物流公司,另一个是农业。


西库勒相信这一冲击会波及很大范围。西库勒表示,可以看看通商航运业的例子:澳大利亚海事安全局(Australian Maritime Safety Authority)提供了实时的港口活动信息,船只可以据此改变航速,节省燃料,让港口服务费降到最低。海事局还使用了地理围栏(一种动态的数字定位区域)来触发和自动计算这些费用。她说:“通过公开数据,这一切都是透明的。”西库勒表示,导致这种转变的不仅仅是大数据技术,移动设备和云计算在其中也扮演了重要角色。


她解释说:“在收集信息、给司机实时提供数据上,移动性起到了重要作用。这不仅是指移动设备,还包括卡车、飞机和轮船上的感应器。”在提高运营效率的压力下,UPS在20世纪90年代为司机引入了手持设备。里维斯表示:“我们必须在智能手机和网络通信出现前就发明它们。”2008年,公司在运货卡车上安装了GPS追踪系统,而Orion则建立在这一基础上。


尽管想要取代在大陆上川流不息的汽车快递不是件容易的事——总之,在亚马逊(Amazon)的无人机快递正式得到使用前是这样——但云计算的兴起让初创公司更容易接触到之前只有大型企业才能拥有的尖端技术。UPS理应走在前面。


里维斯表示:“对我来说,这就是分析技术和大数据的未来——不仅仅是告诉你发生了什么,还能告诉你将要发生什么,如何实时纠正它们。如果有个系统可以智能到预测你的问题,并在它发生前予以解决,那它就像福尔摩斯一样了。看起来像千里眼,但实际上不是。”


“把它变成现实还需要一段时间。不过这就是未来的景象。”


原文发布时间为:2014-08-04

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
4月前
|
存储 分布式计算 大数据
MaxCompute聚簇优化推荐功能发布,单日节省2PB Shuffle、7000+CU!
MaxCompute全新推出了聚簇优化推荐功能。该功能基于 31 天历史运行数据,每日自动输出全局最优 Hash Cluster Key,对于10 GB以上的大型Shuffle场景,这一功能将直接带来显著的成本优化。
251 3
|
4月前
|
数据采集 搜索推荐 Java
Java 大视界 -- Java 大数据在智能教育虚拟学习环境构建与用户体验优化中的应用(221)
本文探讨 Java 大数据在智能教育虚拟学习环境中的应用,涵盖多源数据采集、个性化推荐、实时互动优化等核心技术,结合实际案例分析其在提升学习体验与教学质量中的成效,并展望未来发展方向与技术挑战。
|
5月前
|
数据采集 搜索推荐 算法
大数据信息SEO优化系统软件
大数据信息SEO优化系统软件(V1.0)是公司基于“驱动企业价值持续增长”战略,针对企业网站、电商平台及内容营销场景深度定制的智能化搜索引擎优化解决方案。该软件以“提升搜索排名、精准引流获客”为核心目标,通过整合全网数据采集、智能关键词挖掘、内容质量分析、外链健康度监测等功能模块,为企业构建从数据洞察到策略落地的全链路SEO优化体系,助力品牌高效提升搜索引擎曝光度,实现从流量获取到商业转化的价值升级。
129 2
|
6月前
|
资源调度 安全 Java
Java 大数据在智能教育在线实验室设备管理与实验资源优化配置中的应用实践
本文探讨Java大数据技术在智能教育在线实验室设备管理与资源优化中的应用。通过统一接入异构设备、构建四层实时处理管道及安全防护双体系,显著提升设备利用率与实验效率。某“双一流”高校实践显示,设备利用率从41%升至89%,等待时间缩短78%。该方案降低管理成本,为教育数字化转型提供技术支持。
181 1
|
3月前
|
存储 SQL 分布式计算
MaxCompute 聚簇优化推荐原理
基于历史查询智能推荐Clustered表,显著降低计算成本,提升数仓性能。
287 4
MaxCompute 聚簇优化推荐原理
|
3月前
|
存储 并行计算 算法
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
206 4
|
3月前
|
大数据 数据挖掘 定位技术
买房不是拍脑袋:大数据教你优化房地产投资策略
买房不是拍脑袋:大数据教你优化房地产投资策略
174 2
|
4月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
4月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在生物信息学基因功能预测中的优化与应用(223)
本文探讨了Java大数据与机器学习模型在生物信息学中基因功能预测的优化与应用。通过高效的数据处理能力和智能算法,提升基因功能预测的准确性与效率,助力医学与农业发展。
|
4月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据在智能物流运输车辆智能调度与路径优化中的技术实现(218)
本文深入探讨了Java大数据技术在智能物流运输中车辆调度与路径优化的应用。通过遗传算法实现车辆资源的智能调度,结合实时路况数据和强化学习算法进行动态路径优化,有效提升了物流效率与客户满意度。以京东物流和顺丰速运的实际案例为支撑,展示了Java大数据在解决行业痛点问题中的强大能力,为物流行业的智能化转型提供了切实可行的技术方案。

热门文章

最新文章