[leetcode/lintcode 题解] 阿里面试真题详解:插入区间

简介: [leetcode/lintcode 题解] 阿里面试真题详解:插入区间

描述
给出一个无重叠的按照区间起始端点排序的区间列表。
在列表中插入一个新的区间,你要确保列表中的区间仍然有序且不重叠(如果有必要的话,可以合并区间)。

在线评测地址:领扣题库官网

样例1
输入:
(2, 5) into [(1,2), (5,9)]
输出:
[(1,9)]
样例2
输入:
(3, 4) into [(1,2), (5,9)]
输出:
[(1,2), (3,4), (5,9)]

算法:模拟
只要依次遍历,判断当前元素与要插入元素的关系。

  • 如当前元素的右端点小于插入元素的左端点,则说明当前元素与插入元素无交并。
  • 如当前元素的左端点大于插入元素的右端点,也说明当前元素与插入元素无交并。

依次遍历,判断当前元素与要插入元素的关系,找到插入点,插入这个新区间

  • 若是相交的,那么就停止比较,把要插入元素和当前元素合并成新区间

因为合并后的新区间也许和右边的元素有交集,会引起连锁反应,所以一直和右边的元素合并,直到无法合并为止
复杂度分析

  • 时间复杂度O(n)

    • n为数组的大小
  • 空间复杂度O(n)

    • n为数组的大小

代码

/**
 * Definition of Interval:
 * public classs Interval {
 *     int start, end;
 *     Interval(int start, int end) {
 *         this.start = start;
 *         this.end = end;
 *     }
 */
public class Solution {
    /*
     * @param intervals: Sorted interval list.
     * @param newInterval: new interval.
     * @return: A new interval list.
     */
    public List<Interval> insert(List<Interval> intervals, Interval newInterval) {
        List<Interval> newIntervals = new ArrayList<Interval>();
        if(intervals.size() == 0){
            newIntervals.add(newInterval);
        }
        for (int i = 0; i < intervals.size(); i++) {
            // 如果新区间的结束值小于区间开始值,插在这里,后面续上
            if (newInterval.end < intervals.get(i).start) {
                newIntervals.add(newInterval);
                for (int j = i; j < intervals.size(); j++) {
                    newIntervals.add(intervals.get(j));
                }
                break;
            }
            // 如果新区间的开始值大于区间结束值,把当前区间加进去
            else if (newInterval.start > intervals.get(i).end) {
                newIntervals.add(intervals.get(i));
            }
            // 出现交叉,需要合并
            else {
                newInterval.start = Math.min(newInterval.start, intervals.get(i).start);
                newInterval.end = Math.max(newInterval.end, intervals.get(i).end);
            }
            // 最后只剩一个数据了,添加进去
            if(i == intervals.size() - 1){
                newIntervals.add(newInterval);
            }
        }
        return newIntervals;
    }
}

更多题解参考:九章官网solution

相关文章
|
2月前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
17天前
|
存储 NoSQL 架构师
阿里面试:聊聊 CAP 定理?哪些中间件是AP?为什么?
本文深入探讨了分布式系统中的“不可能三角”——CAP定理,即一致性(C)、可用性(A)和分区容错性(P)三者无法兼得。通过实例分析了不同场景下如何权衡CAP,并介绍了几种典型分布式中间件的CAP策略,强调了理解CAP定理对于架构设计的重要性。
48 4
|
1月前
|
存储 NoSQL 算法
阿里面试:亿级 redis 排行榜,如何设计?
本文由40岁老架构师尼恩撰写,针对近期读者在一线互联网企业面试中遇到的高频面试题进行系统化梳理,如使用ZSET排序统计、亿级用户排行榜设计等。文章详细介绍了Redis的四大统计(基数统计、二值统计、排序统计、聚合统计)原理和应用场景,重点讲解了Redis有序集合(Sorted Set)的使用方法和命令,以及如何设计社交点赞系统和游戏玩家排行榜。此外,还探讨了超高并发下Redis热key分治原理、亿级用户排行榜的范围分片设计、Redis Cluster集群持久化方式等内容。文章最后提供了大量面试真题和解决方案,帮助读者提升技术实力,顺利通过面试。
|
1月前
|
SQL 关系型数据库 MySQL
阿里面试:1000万级大表, 如何 加索引?
45岁老架构师尼恩在其读者交流群中分享了如何在生产环境中给大表加索引的方法。文章详细介绍了两种索引构建方式:在线模式(Online DDL)和离线模式(Offline DDL),并深入探讨了 MySQL 5.6.7 之前的“影子策略”和 pt-online-schema-change 方案,以及 MySQL 5.6.7 之后的内部 Online DDL 特性。通过这些方法,可以有效地减少 DDL 操作对业务的影响,确保数据的一致性和完整性。尼恩还提供了大量面试题和解决方案,帮助读者在面试中充分展示技术实力。
|
4月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
1月前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
|
1月前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
1月前
|
存储 缓存 Java
大厂面试必看!Java基本数据类型和包装类的那些坑
本文介绍了Java中的基本数据类型和包装类,包括整数类型、浮点数类型、字符类型和布尔类型。详细讲解了每种类型的特性和应用场景,并探讨了包装类的引入原因、装箱与拆箱机制以及缓存机制。最后总结了面试中常见的相关考点,帮助读者更好地理解和应对面试中的问题。
61 4
|
2月前
|
算法 Java 数据中心
探讨面试常见问题雪花算法、时钟回拨问题,java中优雅的实现方式
【10月更文挑战第2天】在大数据量系统中,分布式ID生成是一个关键问题。为了保证在分布式环境下生成的ID唯一、有序且高效,业界提出了多种解决方案,其中雪花算法(Snowflake Algorithm)是一种广泛应用的分布式ID生成算法。本文将详细介绍雪花算法的原理、实现及其处理时钟回拨问题的方法,并提供Java代码示例。
93 2
|
2月前
|
JSON 安全 前端开发
第二次面试总结 - 宏汉科技 - Java后端开发
本文是作者对宏汉科技Java后端开发岗位的第二次面试总结,面试结果不理想,主要原因是Java基础知识掌握不牢固,文章详细列出了面试中被问到的技术问题及答案,包括字符串相关函数、抽象类与接口的区别、Java创建线程池的方式、回调函数、函数式接口、反射以及Java中的集合等。
37 0