【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)

简介: 本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!

🧠 DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(LeetCode 300 / 152 / 416)

在动态规划的学习路径中,这三道题常被视作进阶经典,它们分别对应不同的状态定义与优化思路:

  • 📈 300. 最长递增子序列(LIS):子序列类动态规划
  • ✖️ 152. 乘积最大子数组:带正负号波动的区间 DP
  • 🎯 416. 分割等和子集:0-1 背包问题的变种

📈 一、300. 最长递增子序列

📌 题目描述

给你一个整数数组 nums,返回其中最长严格递增子序列的长度。


💡 解题思路(一):动态规划

状态定义:

  • dp[i] 表示以 nums[i] 结尾的最长递增子序列长度。

状态转移方程:

for j := 0; j < i; j++ {
   
    if nums[i] > nums[j] {
   
        dp[i] = max(dp[i], dp[j] + 1)
    }
}

时间复杂度:O(n²)


✅ Go 实现

func lengthOfLIS(nums []int) int {
   
    n := len(nums)
    dp := make([]int, n)
    for i := range dp {
   
        dp[i] = 1
    }

    maxLen := 1
    for i := 1; i < n; i++ {
   
        for j := 0; j < i; j++ {
   
            if nums[i] > nums[j] {
   
                dp[i] = max(dp[i], dp[j]+1)
            }
        }
        maxLen = max(maxLen, dp[i])
    }
    return maxLen
}

func max(a, b int) int {
   
    if a > b {
   
        return a
    }
    return b
}

💡 解法(二):二分优化(贪心 + 二分)

维护一个数组 tailstails[i] 表示长度为 i+1 的递增子序列中末尾最小的值。

时间复杂度:O(n log n)


✖️ 二、152. 乘积最大子数组

📌 题目描述

给你一个整数数组 nums,找出一个乘积最大的连续子数组,返回该乘积。


💡 解题思路

因为负负得正的存在,我们需要同时记录当前的最大值和最小值:

  • dpMax[i]:以 i 结尾的最大乘积
  • dpMin[i]:以 i 结尾的最小乘积

状态转移:

dpMax[i] = max(nums[i], nums[i]*dpMax[i-1], nums[i]*dpMin[i-1])
dpMin[i] = min(nums[i], nums[i]*dpMax[i-1], nums[i]*dpMin[i-1])

✅ Go 实现(空间优化)

func maxProduct(nums []int) int {
   
    maxVal, minVal := nums[0], nums[0]
    res := nums[0]

    for i := 1; i < len(nums); i++ {
   
        tempMax := maxVal
        maxVal = max(nums[i], max(nums[i]*maxVal, nums[i]*minVal))
        minVal = min(nums[i], min(nums[i]*tempMax, nums[i]*minVal))
        res = max(res, maxVal)
    }
    return res
}

🎯 三、416. 分割等和子集

📌 题目描述

给定一个只包含正整数的非空数组,判断能否将其分成两个子集,使得两个子集的和相等


💡 解题思路

转换为 0-1 背包问题

  • 目标是找到一个子集,使其和为 sum/2
  • 状态定义:dp[j] 表示是否存在和为 j 的子集;
  • 状态转移:
dp[j] = dp[j] || dp[j - num]

✅ Go 实现

func canPartition(nums []int) bool {
   
    total := 0
    for _, num := range nums {
   
        total += num
    }
    if total%2 != 0 {
   
        return false
    }
    target := total / 2
    dp := make([]bool, target+1)
    dp[0] = true

    for _, num := range nums {
   
        for j := target; j >= num; j-- {
   
            dp[j] = dp[j] || dp[j-num]
        }
    }
    return dp[target]
}

🔚 总结与对比

题目 类型 状态定义 难点与技巧
300. 最长递增子序列 子序列 DP dp[i] 为以 i 结尾 LIS 长度 可二分优化
152. 乘积最大子数组 区间 DP 同时维护最大最小 处理正负数乘积
416. 分割等和子集 0-1 背包 dp[j] 为是否能组成 j 典型集合和划分

📘 写在最后

这三道题展示了动态规划在处理不同问题时的状态建模能力转移逻辑多样性。可以举一反三,比如:

  • LIS 拓展题:673. 最长递增子序列的个数
  • 背包拓展题:494. 目标和
  • 区间动态规划:42. 接雨水、91. 解码方法

目录
相关文章
|
1月前
|
分布式计算 算法 Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本文讲解了两道经典的图论问题:**岛屿数量(LeetCode 200)** 和 **腐烂的橘子(LeetCode 994)**,分别通过 DFS/BFS 实现。在“岛屿数量”中,利用深度或广度优先搜索遍历二维网格,标记连通陆地并计数;“腐烂的橘子”则采用多源 BFS,模拟腐烂传播过程,计算最短时间。两者均需掌握访问标记技巧,是学习网格搜索算法的绝佳实践。
73 1
|
2月前
|
Go 索引
Go语言数组的定义与操作 - 《Go语言实战指南》
本文介绍了 Go 语言中的数组(Array)相关知识,包括定义、初始化方式(默认、显式、指定索引及自动推导长度)、访问与修改、遍历方法(for 循环和 for range)、值类型特性(复制行为)、多维数组支持以及其与切片的区别。数组是定长且同类型的集合,适合性能敏感场景,但实际开发中更常用动态的切片(slice)。
|
2月前
|
Go
【LeetCode 热题100】155:最小栈(详细解析)(Go语言版)
本文详细解析了力扣热题155:最小栈的解题思路与实现方法。题目要求设计一个支持 push、核心思路是使用辅助栈法,通过两个栈(主栈和辅助栈)来维护当前栈中的最小值。具体操作包括:push 时同步更新辅助栈,pop 时检查是否需要弹出辅助栈的栈顶,getMin 时直接返回辅助栈的栈顶。文章还提供了 Go 语言的实现代码,并对复杂度进行了分析。此外,还介绍了单栈 + 差值记录法的进阶思路,并总结了常见易错点,如 pop 操作时忘记同步弹出辅助栈等。
89 6
|
1月前
|
Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本篇博客详细解析了三道经典的动态规划问题:198. 打家劫舍(线性状态转移)、279. 完全平方数与322. 零钱兑换(完全背包问题)。通过 Go 语言实现,帮助读者掌握动态规划的核心思想及其实战技巧。从状态定义到转移方程,逐步剖析每道题的解法,并总结其异同点,助力解决更复杂的 DP 问题。适合初学者深入理解动态规划的应用场景和优化方法。
49 0
|
1月前
|
算法 Go 索引
【LeetCode 热题100】回溯:括号生成 & 组合总和(力扣22 / 39 )(Go语言版)
本文深入解析了LeetCode上的两道经典回溯算法题:**22. 括号生成**与**39. 组合总和**。括号生成通过维护左右括号数量,确保路径合法并构造有效组合;组合总和则允许元素重复选择,利用剪枝优化搜索空间以找到所有满足目标和的组合。两者均需明确路径、选择列表及结束条件,同时合理运用剪枝策略提升效率。文章附有Go语言实现代码,助你掌握回溯算法的核心思想。
64 0
|
5月前
|
编译器 Go
揭秘 Go 语言中空结构体的强大用法
Go 语言中的空结构体 `struct{}` 不包含任何字段,不占用内存空间。它在实际编程中有多种典型用法:1) 结合 map 实现集合(set)类型;2) 与 channel 搭配用于信号通知;3) 申请超大容量的 Slice 和 Array 以节省内存;4) 作为接口实现时明确表示不关注值。此外,需要注意的是,空结构体作为字段时可能会因内存对齐原因占用额外空间。建议将空结构体放在外层结构体的第一个字段以优化内存使用。
|
5月前
|
运维 监控 算法
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
|
27天前
|
开发框架 JSON 中间件
Go语言Web开发框架实践:路由、中间件、参数校验
Gin框架以其极简风格、强大路由管理、灵活中间件机制及参数绑定校验系统著称。本文详解其核心功能:1) 路由管理,支持分组与路径参数;2) 中间件机制,实现全局与局部控制;3) 参数绑定,涵盖多种来源;4) 结构体绑定与字段校验,确保数据合法性;5) 自定义校验器扩展功能;6) 统一错误处理提升用户体验。Gin以清晰模块化、流程可控及自动化校验等优势,成为开发者的优选工具。
|
29天前
|
JSON 编解码 API
Go语言网络编程:使用 net/http 构建 RESTful API
本章介绍如何使用 Go 语言的 `net/http` 标准库构建 RESTful API。内容涵盖 RESTful API 的基本概念及规范,包括 GET、POST、PUT 和 DELETE 方法的实现。通过定义用户数据结构和模拟数据库,逐步实现获取用户列表、创建用户、更新用户、删除用户的 HTTP 路由处理函数。同时提供辅助函数用于路径参数解析,并展示如何设置路由器启动服务。最后通过 curl 或 Postman 测试接口功能。章节总结了路由分发、JSON 编解码、方法区分、并发安全管理和路径参数解析等关键点,为更复杂需求推荐第三方框架如 Gin、Echo 和 Chi。
|
28天前
|
开发框架 JSON 中间件
Go语言Web开发框架实践:使用 Gin 快速构建 Web 服务
Gin 是一个高效、轻量级的 Go 语言 Web 框架,支持中间件机制,非常适合开发 RESTful API。本文从安装到进阶技巧全面解析 Gin 的使用:快速入门示例(Hello Gin)、定义 RESTful 用户服务(增删改查接口实现),以及推荐实践如参数校验、中间件和路由分组等。通过对比标准库 `net/http`,Gin 提供更简洁灵活的开发体验。此外,还推荐了 GORM、Viper、Zap 等配合使用的工具库,助力高效开发。