【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)

简介: 本篇博客详细解析了三道经典的动态规划问题:198. 打家劫舍(线性状态转移)、279. 完全平方数与322. 零钱兑换(完全背包问题)。通过 Go 语言实现,帮助读者掌握动态规划的核心思想及其实战技巧。从状态定义到转移方程,逐步剖析每道题的解法,并总结其异同点,助力解决更复杂的 DP 问题。适合初学者深入理解动态规划的应用场景和优化方法。

💰 动态规划实战:打家劫舍、完全平方数与零钱兑换(LeetCode 198 / 279 / 322)

本篇博客一次性带你掌握三道 LeetCode 中经典的动态规划(DP)题目:

  • 🏠 198. 打家劫舍(House Robber)
  • 🟩 279. 完全平方数(Perfect Squares)
  • 💸 322. 零钱兑换(Coin Change)

它们覆盖了动态规划中的线性状态转移完全背包问题,以及最小子结构决策问题


🏠 一、198. 打家劫舍

📌 题目描述

一排房子,每个房子里有一定金额的钱,不能偷相邻的两个房子。求最多能偷多少钱?


💡 解题思路

这是一个典型的线性动态规划问题。

dp[i] 表示前 i 个房子最多能偷的钱:

  • 偷第 i 个房子 → 前 i - 2 个房子最大值 + nums[i]
  • 不偷第 i 个房子 → 前 i - 1 个房子最大值

状态转移方程为:

dp[i] = max(dp[i-1], dp[i-2] + nums[i])

✅ Go 实现(空间优化版)

func rob(nums []int) int {
   
    if len(nums) == 0 {
   
        return 0
    }
    if len(nums) == 1 {
   
        return nums[0]
    }
    prev, curr := 0, 0
    for _, num := range nums {
   
        prev, curr = curr, max(curr, prev+num)
    }
    return curr
}

func max(a, b int) int {
   
    if a > b {
   
        return a
    }
    return b
}

🟩 二、279. 完全平方数

📌 题目描述

给你一个整数 n,将其表示为若干个完全平方数的和,求这些数的最少数量。


💡 解题思路

这是一个典型的完全背包问题。

  • 状态定义:dp[i] 表示组成 i 所需的最少平方数数量;
  • 状态转移:尝试每一个 j*j <= i 的平方数:
dp[i] = min(dp[i], dp[i - j*j] + 1)

✅ Go 实现

func numSquares(n int) int {
   
    dp := make([]int, n+1)
    for i := 1; i <= n; i++ {
   
        dp[i] = i // 最坏情况:1+1+1+...+1
        for j := 1; j*j <= i; j++ {
   
            dp[i] = min(dp[i], dp[i - j*j] + 1)
        }
    }
    return dp[n]
}

func min(a, b int) int {
   
    if a < b {
   
        return a
    }
    return b
}

💸 三、322. 零钱兑换

📌 题目描述

给定不同面额的硬币 coins 和总金额 amount,求最少的硬币数量使得总金额为 amount。如果没有一种组合能组成,返回 -1。


💡 解题思路

也是典型的完全背包问题,区别在于:

  • 目标是最小硬币数
  • 状态定义:dp[i] 表示组成金额 i 所需最少的硬币数
  • 初始化:dp[0] = 0,其余为 inf(表示不可达)

状态转移方程:

dp[i] = min(dp[i], dp[i - coin] + 1)

✅ Go 实现

func coinChange(coins []int, amount int) int {
   
    dp := make([]int, amount+1)
    for i := 1; i <= amount; i++ {
   
        dp[i] = amount + 1
    }

    for _, coin := range coins {
   
        for i := coin; i <= amount; i++ {
   
            dp[i] = min(dp[i], dp[i - coin] + 1)
        }
    }

    if dp[amount] > amount {
   
        return -1
    }
    return dp[amount]
}

🔚 总结对比

题目 本质 状态定义 特点
打家劫舍 线性DP dp[i] 表示前 i 间房最多可偷金额 不能连续取相邻元素
完全平方数 完全背包 dp[i] 表示组成 i 所需的最少平方数个数 类似零钱兑换
零钱兑换 完全背包 dp[i] 表示组成金额 i 最少硬币数 与完全平方数模型一致

📘 写在最后

这三道题虽然看起来背景完全不同,但本质上都属于一维动态规划问题,熟悉它们可以极大提升你解决复杂 DP 问题的能力。

建议继续练习类似题目:

    1. 打家劫舍 II(环形房屋)
    1. 三角形最小路径和
    1. 最长递增子序列

目录
相关文章
|
16天前
|
JSON 中间件 Go
Go语言实战指南 —— Go中的反射机制:reflect 包使用
Go语言中的反射机制通过`reflect`包实现,允许程序在运行时动态检查变量类型、获取或设置值、调用方法等。它适用于初中级开发者深入理解Go的动态能力,帮助构建通用工具、中间件和ORM系统等。
156 63
|
6天前
|
自然语言处理 算法 前端开发
Go语言实战案例-判断回文字符串-是不是正着念反着念都一样?
本案例实现判断回文字符串程序,支持中文、英文、标点及空格处理。通过双指针法与Unicode字符比较,帮助读者掌握字符串处理技巧与逻辑编程基础。
|
3天前
|
数据采集 机器学习/深度学习 存储
Go语言实战案例 - 找出切片中的最大值与最小值
本案例通过实现查找整数切片中的最大值与最小值,帮助初学者掌握遍历、比较和错误处理技巧,内容涵盖算法基础、应用场景及完整代码示例,适合初学者提升编程能力。
|
9天前
|
存储 小程序 Go
Go语言实战案例-读取用户输入并打印
本案例介绍如何使用Go语言的`fmt`包读取终端输入并输出信息。通过编写简单的交互程序,学习`fmt.Scanln()`、`fmt.Print()`和字符串拼接等基础I/O操作,适合初学者掌握命令行交互编程。
|
7天前
|
存储 算法 Go
Go语言实战案例-字符串反转
本案例通过“字符串反转”任务,帮助初学者理解Go语言中字符串的本质、Unicode字符处理、切片操作及基本算法思想(如双指针法)。内容涵盖字符串反转的多种应用场景,如回文判断、加密解密等,并提供完整代码实现与解析,支持中文及特殊字符处理,避免乱码问题。同时介绍了错误示范与进阶优化方法,如封装成函数及泛型版本,适合拓展练习与深入学习。
|
8天前
|
Go
Go语言实战案例-简易计算器(加减乘除)
本案例旨在实现一个控制台版简易计算器程序,能够读取用户输入的两个数字和一个运算符(+、-、*、/),并输出相应的计算结果。通过该案例,初学者可以练习基本的输入处理、条件判断、运算操作以及错误处理等编程技能。
|
1月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
80 1
|
5月前
|
编译器 Go
揭秘 Go 语言中空结构体的强大用法
Go 语言中的空结构体 `struct{}` 不包含任何字段,不占用内存空间。它在实际编程中有多种典型用法:1) 结合 map 实现集合(set)类型;2) 与 channel 搭配用于信号通知;3) 申请超大容量的 Slice 和 Array 以节省内存;4) 作为接口实现时明确表示不关注值。此外,需要注意的是,空结构体作为字段时可能会因内存对齐原因占用额外空间。建议将空结构体放在外层结构体的第一个字段以优化内存使用。
|
5月前
|
运维 监控 算法
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
|
27天前
|
开发框架 JSON 中间件
Go语言Web开发框架实践:路由、中间件、参数校验
Gin框架以其极简风格、强大路由管理、灵活中间件机制及参数绑定校验系统著称。本文详解其核心功能:1) 路由管理,支持分组与路径参数;2) 中间件机制,实现全局与局部控制;3) 参数绑定,涵盖多种来源;4) 结构体绑定与字段校验,确保数据合法性;5) 自定义校验器扩展功能;6) 统一错误处理提升用户体验。Gin以清晰模块化、流程可控及自动化校验等优势,成为开发者的优选工具。