JVM调优实战:解决CMS concurrent-abortable-preclean LongGC的问题

简介: 首发公众号:码农架构

背景

多个业务线的应用出现LongGC告警

最近一段时间,经常收到CAT报出来的Long GC告警(配置为大于3秒的为Longgc)。

image.png
image.png

分析前的一些JVM背景知识回顾

JVM堆内存划分

image.png

  • 新生代(Young Generation)
    新生代内被划分为三个区:Eden,from survivor,to survivor。大多数对象在新生代被创建。Minor GC针对的是新生代的垃圾回收。
  • 老年代(Old Generation)
    在新生代中经历了几次Minor GC仍然存活的对象,就会被放到老年代。Major GC针对的是老年代的垃圾回收。本文重点分析的CMS就是一种针对老年代的垃圾回收算法。另外Full GC是针对整堆(包括新生代和老年代)做垃圾回收的。
  • 永久代(Perm)
    主要存放已被虚拟机加载的类信息,常量,静态变量等数据。该区域对垃圾回收的影响不大,本文不会过多涉及。

CMS垃圾回收的6个重要阶段

  • initial-mark 初始标记(CMS的第一个STW阶段),标记GC Root直接引用的对象,GC Root直接引用的对象不多,所以很快。
  • concurrent-mark 并发标记阶段,由第一阶段标记过的对象出发,所有可达的对象都在本阶段标记。
  • concurrent-preclean 并发预清理阶段,也是一个并发执行的阶段。在本阶段,会查找前一阶段执行过程中,从新生代晋升或新分配或被更新的对象。通过并发地重新扫描这些对象,预清理阶段可以减少下一个stop-the-world 重新标记阶段的工作量。
  • concurrent-abortable-preclean 并发可中止的预清理阶段。这个阶段其实跟上一个阶段做的东西一样,也是为了减少下一个STW重新标记阶段的工作量。增加这一阶段是为了让我们可以控制这个阶段的结束时机,比如扫描多长时间(默认5秒)或者Eden区使用占比达到期望比例(默认50%)就结束本阶段。
  • remark 重标记阶段(CMS的第二个STW阶段),暂停所有用户线程,从GC Root开始重新扫描整堆,标记存活的对象。需要注意的是,虽然CMS只回收老年代的垃圾对象,但是这个阶段依然需要扫描新生代,因为很多GC Root都在新生代,而这些GC Root指向的对象又在老年代,这称为“跨代引用”。
  • concurrent-sweep ,并发清理。

分析

下面先看看出现LongGC时发生了什么。
选取其中一个应用分析其GC日志,发现LongGC发生在CMS 的收集阶段。
image.png
箭头1 显示abortable-preclean阶段耗时4.04秒。箭头2 显示的是remark阶段,耗时0.11秒。

虽然abortable-preclean阶段是concurrent的,不会暂停其他的用户线程。就算不优化,可能影响也不大。但是天>天收到各个业务线的gc报警,长久来说也不是好事。

在调优之前先看下该应用的GC统计数据,包括GC次数,耗时:
image.png

统计期间内(18天)发生CMS GC 69次,其中 abortable preclean阶段平均耗时2.45秒,final remark阶段平均112ms,最大耗时170ms.

优化目标

降低abortable preclean 时间,而且不增加final remark的时间(因为remark是STW的)。

JVM参数调优

第一次调优

先尝试调低abortable preclean阶段的时间,看看效果。

有两个参数可以控制这个阶段何时结束:

  • -XX:CMSMaxAbortablePrecleanTime=5000 ,默认值5s,代表该阶段最大的持续时间
  • -XX:CMSScheduleRemarkEdenPenetration=50 ,默认值50%,代表Eden区使用比例超过50%就结束该阶段进入remark 调整为最大持续时间为1s,Eden区使用占比10%,如下:
  • -XX:CMSMaxAbortablePrecleanTime=1000
  • -XX:CMSScheduleRemarkEdenPenetration=10

为什么调整成这样两个值,我们是这样考虑的:首先每次CMS都发生在老年代使用占比达到80%时,因为这是由下面两个参数决定的:

-XX:CMSInitiatingOccupancyFraction=80
-XX:+UseCMSInitiatingOccupancyOnly

而老年代的增长是由于部分对象在Minor GC后仍然存活,被晋升到老年代,导致老年代使用占比增长的,也就是在每次CMS GC发生之前刚刚发生过一次Minor GC,所以在那一刻新生代的使用占比是很低的。那么我们预计这个时候尽快结束abortable preclean阶段,在remark时就不需要扫描太多的Eden区对象,remark STW的时间也就不会太长。

调整的思路是这样了,那到底效果如何呢?

第一次调整的的结果

详细过程请查看原文

第二次调整的结果

详细过程请查看原文

小结
解决abortable preclean 时间过长的方案可以归结为两步:

  • 缩短abortable preclean 时长,通过调整这两个参数:
-XX:CMSMaxAbortablePrecleanTime=xxx
-XX:CMSScheduleRemarkEdenPenetration=xxx

调整为多少的一个判断标准是:abortable preclean阶段结束时,新生代的空间占用不能大于某个参考值。**在前面第一次调优后,新生代(YG)占用181.274M,remark耗时80ms;新生代(YG)占用773.427M时,remark耗时910ms。所以这个参考值可以是300M。而如果新生代增长过快,像这次调优应用2秒内就能用光2G新生代堆空间的,就只能通过CMSScavengeBeforeRemark做一次Minor GC了。

  • 增加CMSScavengeBeforeRemark参数开启remark前进行Minor GC的尝试。
  • 虽然官方说明这个增加这个参数是尝试进行Minor GC,不一定会进行。但实际使用起来,几乎每次remark前都会Minor GC

详细解决过程请查看原文

总结

  • 调优前明确目标
  • 调优过程对GC指标进行数据统计分析(本文借助gceasy.io在线分析工具)来验证效果
  • 需要能看懂GC日志
  • GC调优不是一个一蹴而就的事情,它是微调-观察-再微调的过程。所以需要比较深入了解GC的一些基础,才能少走弯路。

码农架构-公众号.jpg
相关文章
|
14天前
|
NoSQL Java Redis
秒杀抢购场景下实战JVM级别锁与分布式锁
在电商系统中,秒杀抢购活动是一种常见的营销手段。它通过设定极低的价格和有限的商品数量,吸引大量用户在特定时间点抢购,从而迅速增加销量、提升品牌曝光度和用户活跃度。然而,这种活动也对系统的性能和稳定性提出了极高的要求。特别是在秒杀开始的瞬间,系统需要处理海量的并发请求,同时确保数据的准确性和一致性。 为了解决这些问题,系统开发者们引入了锁机制。锁机制是一种用于控制对共享资源的并发访问的技术,它能够确保在同一时间只有一个进程或线程能够操作某个资源,从而避免数据不一致或冲突。在秒杀抢购场景下,锁机制显得尤为重要,它能够保证商品库存的扣减操作是原子性的,避免出现超卖或数据不一致的情况。
45 10
|
23天前
|
监控 架构师 Java
Java虚拟机调优的艺术:从入门到精通####
本文作为一篇深入浅出的技术指南,旨在为Java开发者揭示JVM调优的神秘面纱,通过剖析其背后的原理、分享实战经验与最佳实践,引领读者踏上从调优新手到高手的进阶之路。不同于传统的摘要概述,本文将以一场虚拟的对话形式,模拟一位经验丰富的架构师向初学者传授JVM调优的心法,激发学习兴趣,同时概括性地介绍文章将探讨的核心议题——性能监控、垃圾回收优化、内存管理及常见问题解决策略。 ####
|
1月前
|
监控 Java 编译器
Java虚拟机调优指南####
本文深入探讨了Java虚拟机(JVM)调优的精髓,从内存管理、垃圾回收到性能监控等多个维度出发,为开发者提供了一系列实用的调优策略。通过优化配置与参数调整,旨在帮助读者提升Java应用的运行效率和稳定性,确保其在高并发、大数据量场景下依然能够保持高效运作。 ####
32 1
|
1月前
|
存储 算法 Java
JVM进阶调优系列(10)敢向stop the world喊卡的G1垃圾回收器 | 有必要讲透
本文详细介绍了G1垃圾回收器的背景、核心原理及其回收过程。G1,即Garbage First,旨在通过将堆内存划分为多个Region来实现低延时的垃圾回收,每个Region可以根据其垃圾回收的价值被优先回收。文章还探讨了G1的Young GC、Mixed GC以及Full GC的具体流程,并列出了G1回收器的核心参数配置,帮助读者更好地理解和优化G1的使用。
|
1月前
|
监控 Java 测试技术
Elasticsearch集群JVM调优垃圾回收器的选择
Elasticsearch集群JVM调优垃圾回收器的选择
55 1
|
1月前
|
Arthas 监控 Java
JVM进阶调优系列(9)大厂面试官:内存溢出几种?能否现场演示一下?| 面试就那点事
本文介绍了JVM内存溢出(OOM)的四种类型:堆内存、栈内存、元数据区和直接内存溢出。每种类型通过示例代码演示了如何触发OOM,并分析了其原因。文章还提供了如何使用JVM命令工具(如jmap、jhat、GCeasy、Arthas等)分析和定位内存溢出问题的方法。最后,强调了合理设置JVM参数和及时回收内存的重要性。
|
1月前
|
监控 Java 编译器
Java虚拟机调优实战指南####
本文深入探讨了Java虚拟机(JVM)的调优策略,旨在帮助开发者和系统管理员通过具体、实用的技巧提升Java应用的性能与稳定性。不同于传统摘要的概括性描述,本文摘要将直接列出五大核心调优要点,为读者提供快速预览: 1. **初始堆内存设置**:合理配置-Xms和-Xmx参数,避免频繁的内存分配与回收。 2. **垃圾收集器选择**:根据应用特性选择合适的GC策略,如G1 GC、ZGC等。 3. **线程优化**:调整线程栈大小及并发线程数,平衡资源利用率与响应速度。 4. **JIT编译器优化**:利用-XX:CompileThreshold等参数优化即时编译性能。 5. **监控与诊断工
|
1月前
|
存储 监控 Java
JVM进阶调优系列(8)如何手把手,逐行教她看懂GC日志?| IT男的专属浪漫
本文介绍了如何通过JVM参数打印GC日志,并通过示例代码展示了频繁YGC和FGC的场景。文章首先讲解了常见的GC日志参数,如`-XX:+PrintGCDetails`、`-XX:+PrintGCDateStamps`等,然后通过具体的JVM参数和代码示例,模拟了不同内存分配情况下的GC行为。最后,详细解析了GC日志的内容,帮助读者理解GC的执行过程和GC处理机制。
|
1月前
|
存储 IDE Java
实战优化公司线上系统JVM:从基础到高级
【11月更文挑战第28天】Java虚拟机(JVM)是Java语言的核心组件,它使得Java程序能够实现“一次编写,到处运行”的跨平台特性。在现代应用程序中,JVM的性能和稳定性直接影响到系统的整体表现。本文将深入探讨JVM的基础知识、基本特点、定义、发展历史、主要概念、调试工具、内存管理、垃圾回收、性能调优等方面,并提供一个实际的问题demo,使用IntelliJ IDEA工具进行调试演示。
35 0
|
2月前
|
Arthas 监控 数据可视化
JVM进阶调优系列(7)JVM调优监控必备命令、工具集合|实用干货
本文介绍了JVM调优监控命令及其应用,包括JDK自带工具如jps、jinfo、jstat、jstack、jmap、jhat等,以及第三方工具如Arthas、GCeasy、MAT、GCViewer等。通过这些工具,可以有效监控和优化JVM性能,解决内存泄漏、线程死锁等问题,提高系统稳定性。文章还提供了详细的命令示例和应用场景,帮助读者更好地理解和使用这些工具。