Flink RocksDB 状态后端参数调优实践

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: RocksDB 的配置也是极为复杂的,可调整的参数多达百个,没有放之四海而皆准的优化方案。如果仅考虑 Flink 状态存储这一方面,我们仍然可以总结出一些相对普适的优化思路。本文先介绍一些基础知识,再列举方法。

作者:LittleMagic

截至当前,Flink 作业的状态后端仍然只有 Memory、FileSystem 和 RocksDB 三种可选,且 RocksDB 是状态数据量较大(GB 到 TB 级别)时的唯一选择。RocksDB 的性能发挥非常仰赖调优,如果全部采用默认配置,读写性能有可能会很差。

但是,RocksDB 的配置也是极为复杂的,可调整的参数多达百个,没有放之四海而皆准的优化方案。如果仅考虑 Flink 状态存储这一方面,我们仍然可以总结出一些相对普适的优化思路。本文先介绍一些基础知识,再列举方法。

Note:本文的内容是基于我们在线上运行的 Flink 1.9 版本实践得出的。在1.10版本及以后,由于 TaskManager 内存模型重构,RocksDB 内存默认成为了堆外托管内存的一部分,可以免去一些手动调整的麻烦。如果性能仍然不佳,需要干预,则必须将 state.backend.rocksdb.memory.managed 参数设为 false 来禁用 RocksDB 内存托管。

State R/W on RocksDB

RocksDB 作为 Flink 状态后端时的读写逻辑与一般情况略有不同,如下图所示。

1.jpg

Flink 作业中的每一个注册的状态都对应一个列族(column family),即包含自己独立的 memtable 和 sstable 集合。写操作会先将数据写入活动 memtable,写满之后则会转换为不可变 memtable,并 flush 到磁盘中形成 sstable。读操作则会依次在活动 memtable、不可变 memtable、block cache 和 sstable 中寻找目标数据。另外,sstable 也需要通过 compaction 策略进行合并,最终形成分层的 LSM Tree 存储结构,老生常谈了。

特别地,由于 Flink 在每个检查点周期都会将 RocksDB 的数据快照持久化到文件系统,所以自然也就不需要再写预写日志(WAL)了,可以安全地关闭WAL与fsync。

之前笔者已经详细讲解过 RocksDB 的 compaction 策略,并且提到了读放大、写放大和空间放大的概念,对 RocksDB 的调优本质上就是在这三个因子之间取得平衡。而在 Flink 作业这种注重实时性的场合,则要重点考虑读放大和写放大。

2.jpg

Tuning MemTable

memtable 作为 LSM Tree 体系里的读写缓存,对写性能有较大的影响。以下是一些值得注意的参数。为方便对比,下文都会将 RocksDB 的原始参数名与 Flink 配置中的参数名一并列出,用竖线分割。

  • write_buffer_size | state.backend.rocksdb.writebuffer.size
    单个 memtable 的大小,默认是64MB。当 memtable 大小达到此阈值时,就会被标记为不可变。一般来讲,适当增大这个参数可以减小写放大带来的影响,但同时会增大 flush 后 L0、L1 层的压力,所以还需要配合修改 compaction 参数,后面再提。
  • max_write_buffer_number | state.backend.rocksdb.writebuffer.count
  1. 的最大数量(包含活跃的和不可变的),默认是2。当全部 memtable 都写满但是 flush 速度较慢时,就会造成写停顿,所以如果内存充足或者使用的是机械硬盘,建议适当调大这个参数,如4。
  • min_write_buffer_number_to_merge | state.backend.rocksdb.writebuffer.number-to-merge
    在 flush 发生之前被合并的 memtable 最小数量,默认是1。举个例子,如果此参数设为2,那么当有至少两个不可变 memtable 时,才有可能触发 flush(亦即如果只有一个不可变 memtable,就会等待)。调大这个值的好处是可以使更多的更改在 flush 前就被合并,降低写放大,但同时又可能增加读放大,因为读取数据时要检查的 memtable 变多了。经测试,该参数设为2或3相对较好。

Tuning Block/Block Cache

block 是 sstable 的基本存储单位。block cache 则扮演读缓存的角色,采用 LRU 算法存储最近使用的 block,对读性能有较大的影响。

  • block_size | state.backend.rocksdb.block.blocksize
  1. 的大小,默认值为4KB。在生产环境中总是会适当调大一些,一般32KB比较合适,对于机械硬盘可以再增大到128~256KB,充分利用其顺序读取能力。但是需要注意,如果 block 大小增大而 block cache 大小不变,那么缓存的 block 数量会减少,无形中会增加读放大。
  • block_cache_size | state.backend.rocksdb.block.cache-size
  1. cache 的大小,默认为8MB。由上文所述的读写流程可知,较大的 block cache 可以有效避免热数据的读请求落到 sstable 上,所以若内存余量充足,建议设置到128MB甚至256MB,读性能会有非常明显的提升。

Tuning Compaction

compaction 在所有基于 LSM Tree 的存储引擎中都是开销最大的操作,弄不好的话会非常容易阻塞读写。建议看官先读读前面那篇关于 RocksDB 的 compaction 策略的文章,获取一些背景知识,这里不再赘述。

  • compaction_style | state.backend.rocksdb.compaction.style
  1. 算法,使用默认的 LEVEL(即 leveled compaction)即可,下面的参数也是基于此。
  • target_file_size_base | state.backend.rocksdb.compaction.level.target-file-size-base
    L1层单个 sstable 文件的大小阈值,默认值为64MB。每向上提升一级,阈值会乘以因子 target_file_size_multiplier(但默认为1,即每级sstable最大都是相同的)。显然,增大此值可以降低 compaction 的频率,减少写放大,但是也会造成旧数据无法及时清理,从而增加读放大。此参数不太容易调整,一般不建议设为256MB以上。
  • max_bytes_for_level_base | state.backend.rocksdb.compaction.level.max-size-level-base
    L1层的数据总大小阈值,默认值为256MB。每向上提升一级,阈值会乘以因子 max_bytes_for_level_multiplier(默认值为10)。由于上层的大小阈值都是以它为基础推算出来的,所以要小心调整。建议设为 target_file_size_base 的倍数,且不能太小,例如5~10倍。
  • level_compaction_dynamic_level_bytes | state.backend.rocksdb.compaction.level.use-dynamic-size
    这个参数之前讲过。当开启之后,上述阈值的乘法因子会变成除法因子,能够动态调整每层的数据量阈值,使得较多的数据可以落在最高一层,能够减少空间放大,整个 LSM Tree 的结构也会更稳定。对于机械硬盘的环境,强烈建议开启。

Generic Parameters

  • max_open_files | state.backend.rocksdb.files.open
    顾名思义,是 RocksDB 实例能够打开的最大文件数,默认为-1,表示不限制。由于sstable的索引和布隆过滤器默认都会驻留内存,并占用文件描述符,所以如果此值太小,索引和布隆过滤器无法正常加载,就会严重拖累读取性能。
  • max_background_compactions/max_background_flushes | state.backend.rocksdb.thread.num
    后台负责 flush 和 compaction 的最大并发线程数,默认为1。注意 Flink 将这两个参数合二为一处理(对应 DBOptions.setIncreaseParallelism() 方法),鉴于 flush 和 compaction 都是相对重的操作,如果 CPU 余量比较充足,建议调大,在我们的实践中一般设为4。

结语

除了上述设置参数的方法之外,用户还可以通过实现 ConfigurableRocksDBOptionsFactory 接口,创建 DBOptions 和 ColumnFamilyOptions 实例来传入自定义参数,更加灵活一些。看官可参考 Flink 预先定义好的几个 RocksDB 参数集(位于 PredefinedOptions 枚举中)获取更多信息。

本文转载自 LittleMagic 的博客,原文链接:
https://www.jianshu.com/p/bc7309b03407

更多 Flink 技术交流可扫码加入社区钉钉大群。

最新钉群二维码.jpeg

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
存储 IDE Java
Flink---12、状态后端(HashMapStateBackend/RocksDB)、如何选择正确的状态后端
Flink---12、状态后端(HashMapStateBackend/RocksDB)、如何选择正确的状态后端
|
5月前
|
存储 缓存 前端开发
Django 后端架构开发:存储层调优策略解析
Django 后端架构开发:存储层调优策略解析
72 2
|
5月前
|
消息中间件 存储 监控
Django后端架构开发:Celery异步调优,任务队列和调度
Django后端架构开发:Celery异步调优,任务队列和调度
87 1
|
5月前
|
消息中间件 监控 Kafka
联通实时计算平台问题之Flink状态后端数据量较大时,问题排查要如何进行
联通实时计算平台问题之Flink状态后端数据量较大时,问题排查要如何进行
|
6月前
|
存储 SQL Java
实时计算 Flink版产品使用问题之使用状态后端存储和恢复作业的状态时,如何配置状态后端
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
7月前
|
消息中间件 Java Kafka
实时计算 Flink版操作报错合集之RocksDB在尝试打开更多文件时达到了操作系统允许的最大打开文件数限制,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
135 0
|
26天前
|
存储 缓存 负载均衡
后端开发中的性能优化策略
本文将探讨几种常见的后端性能优化策略,包括代码层面的优化、数据库查询优化、缓存机制的应用以及负载均衡的实现。通过这些方法,开发者可以显著提升系统的响应速度和处理能力,从而提供更好的用户体验。
51 4
|
5天前
|
开发框架 小程序 前端开发
圈子社交app前端+后端源码,uniapp社交兴趣圈子开发,框架php圈子小程序安装搭建
本文介绍了圈子社交APP的源码获取、分析与定制,PHP实现的圈子框架设计及代码编写,以及圈子小程序的安装搭建。涵盖环境配置、数据库设计、前后端开发与接口对接等内容,确保平台的安全性、性能和功能完整性。通过详细指导,帮助开发者快速搭建稳定可靠的圈子社交平台。
66 17
|
17天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
53 3
|
1月前
|
存储 前端开发 Java
深入理解后端开发:从基础到高级
本文将带你走进后端开发的神秘世界,从基础概念到高级应用,一步步揭示后端开发的全貌。我们将通过代码示例,让你更好地理解和掌握后端开发的核心技能。无论你是初学者还是有一定经验的开发者,这篇文章都将为你提供有价值的信息和启示。

相关产品

  • 实时计算 Flink版