计算机视觉如何改善我们的日常生活

简介: 探索家庭中智能技术的惊人可能性,这些场景可以看到我们需要的东西,并以各种方式帮助我们解决问题。

--------点击屏幕右侧或者屏幕底部“+订阅”,关注我,随时分享机器智能最新行业动态及技术干货----------

人工智能,利用机器学习的力量来处理各种日常任务的技术,已经在改变我们工作、购物、银行和驾驶的方式。

它给我们带来了一些技术,可以为工人处理平凡、重复的工作,检测欺诈性的金融交易,并允许自动驾驶汽车做出决定。但是人工智能如何改变我们在自己家里管理日常生活的方式呢?

通过采用Alexa和许多其他物联网设备,我们已经开始向智能技术移交一些责任。

image.png

如果我们忘记锁车,我们可以很快纠正错误并远程锁车。如果我们忘记锁上房门或设置DVR来录制喜爱的节目,我们也可以远程处理。

人工智能技术的下一步将增强它们的实用性。就像它们接管工作场所耗时、无需大脑的日常任务一样,它们将开始从我们家里接手一些苦差事。

前面仅是一些场景,探索家庭中智能技术的惊人可能性,这些场景可以看到我们需要的东西,并以各种方式帮助我们解决问题。

轻松购物

你的智能冰箱在不久的将来有一个摄像头,可以看到牛奶的存量正在减少,或者盒子已经永久地从冰箱中取出,并了解这对你意味着什么。

冰箱和食品储藏室(也有一个智能摄像头)可交换有关牛奶供应状况的信息。这两个食品存储系统意识到您将要用尽这一必需品,因此向您发送一条文本信息,询问您是否要将其添加到购物清单中。这就是物体识别的魔力。

为了让您的购物清单保持最新,您的冰箱将信息与洗衣房、浴室、车库和其他任何需要持续存放物品的地方的货架和存储单元进行协调。当需要进行实际的购物时,您所要做的就是检查列表,添加您认为缺失的任何东西并下订单。

每天的家务活都有很多电器的帮助

以下是一些日常情况的例子,每天都会出现在某个人身上。他们并不太重要或导致过大压力,但在漫长的工作日、家庭和其他责任之外,又增添了太多的这些小烦恼,使他们开始感到有点沉重。

1. 洗衣

你有没有过不小心洗了有污点的东西却没有注意到的经历?那个污点会毁了你的白衬衫。想象一下,如果有一台洗衣机,由于异常检测,它能在你最喜欢的一件衣服上漏了一块污渍时告诉你,例如“灰色运动衫上有芥末渍。 您想预处理吗?”

再也不会忘记,您将鸡翅掉在您最喜欢的那条紧身牛仔裤上,然后漫不经心地将它们洗了一遍,使污点永生。

当然,如果污渍没有消失,您的裤子抽屉将告诉您,您需要购买更多的裤子。

2. 晚餐没主意

如果你冰箱和食品存储室里的东西不多了。不用担心,两者可以结合起来,提出使用你手头已有物品的食谱建议。这样你就可以专注于下午的会议,而不是纠结于晚餐做什么。

3. 睡个好觉

宝宝房间的空调可以将房间保持在一定温度,但这仍然不能告诉您她是太暖还是太冷。智能温度控制可以“看到”孩子额头上的汗水,或者注意到她已经踢开了毯子,或者正在翻来覆去,然后决定为房间降温直到她感到舒适为止。

相反,如果她太冷,人工智能动作检测可以捕捉到视觉信息,比如把毯子拉在一起。然后它可以检查房间的温度,确定它是有点冷,并决定让房间暖和起来。

同样的智能温度控制,不仅对于不能自己调节空调的宝宝来说特别方便,同样也适用于爸爸妈妈,他们在房间变得不舒服之前也无法唤醒任何人,他们也需要智能调节温度。

智能家电给了人类时间的礼物

智能家电和存储系统可以让工作繁忙的父母们在早上和晚上花更多的时间与他们的孩子和彼此亲密接触,而不用花那么多时间去打理家务。

智能家居技术有许多节省时间和精力的应用。在这个职业不断发展的时代,时间是我们最需要的东西,人工智能驱动的设备可以减轻我们的负担,还给我们一些宝贵的、失去的时间,是一些最能提高生活质量的技术创新。

image.png

文章来源:https://ai.51cto.com/art/202006/619638.htm
文章转自51cto,本文一切观点和《机器智能技术》圈子无关

目录
相关文章
|
1月前
|
机器学习/深度学习 供应链 搜索推荐
深度学习与日常生活的融合
本文旨在探索深度学习技术在日常生活中的应用,分析其对各行各业的影响以及未来发展趋势。通过具体案例,展示深度学习如何改变我们的生活方式和工作模式,为读者提供全面而深入的理解。
|
6月前
|
机器学习/深度学习 传感器 自动驾驶
构建一个基于深度学习的自动驾驶模拟系统
【5月更文挑战第31天】本文探讨了构建基于深度学习的自动驾驶模拟系统,该系统包括模拟环境、传感器模拟、深度学习模型、车辆控制和评估反馈等组件。关键技术研发涉及3D渲染、深度学习框架、传感器模拟、车辆动力学模型和评估反馈机制。模拟系统为自动驾驶测试提供安全平台,促进性能优化,随着技术发展,未来模拟系统将更智能,助力自动驾驶技术革新出行体验。
|
6月前
|
搜索推荐 安全 物联网
【大模型】LLMs被广泛地融入日常生活的未来场景分析
【5月更文挑战第7天】【大模型】LLMs被广泛地融入日常生活的未来场景分析
【大模型】LLMs被广泛地融入日常生活的未来场景分析
|
人工智能 自动驾驶 安全
人工智能的最终目标:超越人类智能的未来
人工智能(AI)已经成为当今世界最引人注目的技术领域之一,其应用范围涵盖了从医疗保健到自动驾驶汽车的各个领域。然而,尽管AI在许多任务上已经表现出惊人的能力,但其最终目标是什么?这是一个备受争议的问题,但大多数研究人员和科技领袖都同意,人工智能的最终目标是超越人类智能。
|
6月前
|
机器学习/深度学习 自动驾驶 安全
利用深度学习技术实现自动驾驶系统
传统的自动驾驶系统常常受限于复杂的环境和预测能力的挑战。本文介绍了如何利用深度学习技术来改进自动驾驶系统,通过神经网络模型对环境进行实时感知和决策,从而实现更高效、更安全的自动驾驶体验。通过结合图像识别、目标检测和路径规划等技术,我们可以有效地提高自动驾驶系统在各种复杂情况下的性能表现。
|
6月前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用研究
【2月更文挑战第24天】 随着人工智能技术的飞速发展,深度学习已成为推动技术创新的核心力量之一。特别是在图像识别领域,深度学习技术凭借其卓越的特征提取和模式识别能力,已广泛应用于自动驾驶系统中,成为实现车辆环境感知的关键技术。本文旨在探讨基于深度学习的图像识别技术如何优化自动驾驶系统的性能。通过分析卷积神经网络(CNN)在道路标识检测、行人识别和障碍物分类等任务中的应用实例,评估其在提高自动驾驶安全性和可靠性方面的作用。同时,文章还将讨论当前面临的挑战及未来的发展趋势,为自动驾驶领域的进一步研究提供参考。
|
机器学习/深度学习 人工智能 算法
人工智能在医学领域的局限性
随着科技发展,人工智能技术在教育领域中的应用已取得较大进展。近年来,人工智能(AI)技术和由其引发的大数据时代自社会的各个层面包括我们的思维、生活方式和工作模式产生了巨大的变革;其与医学的结合给医疗系统带来深远的影响。从互联网到云计算,再到由大数据集合而成的人工智能,不断更新的处理手段使医疗行业也开始尝试新的转变,从传统的人工诊疗、教学模式逐步转变为依据机器学习来获取更高效的信息,并在医学多个领域已有比较广泛的应用。本文将从人工智能在医学领域的优势、当前的进展、应用、局限性和未来方向来进行综述。
262 1
|
存储 传感器 自动驾驶
计算机视觉的优势和挑战
计算机视觉的优势和挑战
|
机器学习/深度学习 人工智能 文字识别
AIGC背后的技术分析 | 计算机视觉
深度学习领域技术的飞速发展,给人们的生活带来了很大改变。例如,智能语音助手能够与人类无障碍地沟通,甚至在视频通话时可以提供实时翻译;将手机摄像头聚焦在某个物体上,该物体的相关信息就会被迅速地反馈给使用者;在购物网站上浏览商品时,机器也在同时分析着用户的偏好,并及时个性化地推荐用户可能感兴趣的商品。原先以为只有人类才能做到的事,现在机器也能毫无差错地完成,甚至超越人类,这显然与深度学习的发展密不可分,技术正引领人类社会走向崭新的世界。 PyTorch是当前主流深度学习框架之一,其设计追求最少的封装、最直观的设计,其简洁优美的特性使得PyTorch代码更易理解,对新手非常友好。
254 0
AIGC背后的技术分析 | 计算机视觉
|
机器学习/深度学习 人工智能 编解码
深度学习在机器视觉应用领域的最新研究综述(物联网技术应用大作业)
深度学习在机器视觉应用领域的最新研究综述(物联网技术应用大作业)
459 0