本文是[数据结构基础系列(7):图]中第12课时[最小生成树的克鲁斯卡尔算法]的例程。
(程序中graph.h是图存储结构的“算法库”中的头文件,详情请单击链接…)
#include <stdio.h>
#include <malloc.h>
#include "graph.h"
#define MaxSize 100
typedef struct
{
int u; //边的起始顶点
int v; //边的终止顶点
int w; //边的权值
} Edge;
void InsertSort(Edge E[],int n) //对E[0..n-1]按递增有序进行直接插入排序
{
int i,j;
Edge temp;
for (i=1; i<n; i++)
{
temp=E[i];
j=i-1; //从右向左在有序区E[0..i-1]中找E[i]的插入位置
while (j>=0 && temp.w<E[j].w)
{
E[j+1]=E[j]; //将关键字大于E[i].w的记录后移
j--;
}
E[j+1]=temp; //在j+1处插入E[i]
}
}
void Kruskal(MGraph g)
{
int i,j,u1,v1,sn1,sn2,k;
int vset[MAXV];
Edge E[MaxSize]; //存放所有边
k=0; //E数组的下标从0开始计
for (i=0; i<g.n; i++) //由g产生的边集E
for (j=0; j<g.n; j++)
if (g.edges[i][j]!=0 && g.edges[i][j]!=INF)
{
E[k].u=i;
E[k].v=j;
E[k].w=g.edges[i][j];
k++;
}
InsertSort(E,g.e); //采用直接插入排序对E数组按权值递增排序
for (i=0; i<g.n; i++) //初始化辅助数组
vset[i]=i;
k=1; //k表示当前构造生成树的第几条边,初值为1
j=0; //E中边的下标,初值为0
while (k<g.n) //生成的边数小于n时循环
{
u1=E[j].u;
v1=E[j].v; //取一条边的头尾顶点
sn1=vset[u1];
sn2=vset[v1]; //分别得到两个顶点所属的集合编号
if (sn1!=sn2) //两顶点属于不同的集合
{
printf(" (%d,%d):%d\n",u1,v1,E[j].w);
k++; //生成边数增1
for (i=0; i<g.n; i++) //两个集合统一编号
if (vset[i]==sn2) //集合编号为sn2的改为sn1
vset[i]=sn1;
}
j++; //扫描下一条边
}
}
int main()
{
MGraph g;
int A[6][6]=
{
{0,6,1,5,INF,INF},
{6,0,5,INF,3,INF},
{1,5,0,5,6,4},
{5,INF,5,0,INF,2},
{INF,3,6,INF,0,6},
{INF,INF,4,2,6,0}
};
ArrayToMat(A[0], 6, g);
printf("最小生成树构成:\n");
Kruskal(g);
return 0;
}
附:测试用图结构