Android中Bitmap内存优化

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 性能优化 bitmap

Android开发中,Bitmap是经常会遇到的对象,特别是在列表图片展示、大图显示等界面。而Bitmap实实在在是内存使用的“大客户”。如何更好的使用Bitmap,减少其对App内存的使用,是Android优化方面不可回避的问题。因此,本文从常规的Bitmap使用,到Bitmap内存计算进行了介绍,最后分析了Bitmap的源码和其内存模型在不同版本上的变化。

Bitmap的使用

一般来说,一个对象的使用,我们会尝试利用其构造函数去生成这个对象。在Bitmap中,其构造函数:

// called from JNI
    Bitmap(long nativeBitmap, byte[] buffer, int width, int height, int density,
            boolean isMutable, boolean requestPremultiplied,
            byte[] ninePatchChunk, NinePatch.InsetStruct ninePatchInsets) 

通过构造函数的注释,得知这是一个给native层调用的方法,因此可以知道Bitmap的创建将会涉及到底层库的支持。为了方便从不同来源来创建Bitmap,Android中提供了BitmapFactory工具类。BitmapFactory类中有一系列的decodeXXX方法,用于解析资源文件、本地文件、流等方式,基本流程都很类似,读取目标文件,转换成输入流,调用native方法解析流,虽然Java层代码没有体现,但是我们可以猜想到,最后native方法解析完成后,必然会通过JNI调用Bitmap的构造函数,完成Java层的Bitmap对象创建。

// BitmapFactory部分代码:
public static Bitmap decodeResource(Resources res, int id)
public static Bitmap decodeStream(InputStream is)
private static native Bitmap nativeDecodeStream

native层的代码稍后我们在看,先从Java层来看看常规的使用。典型的一个例子是,当我们需要从本地Resource中加载一个图片,并展示出来,我们可以通过BitmapFacotry来完成:

Bitmap bitmapDecode = BitmapFactory.decodeResource(getResources(), resId);
imageView.setImageBitmap(bitmapDecode);

当然,这里简单的使用imageView.setImageResource(int resId)也能实现一样的效果,实际上setImageResource方法只是封装了bitmap的读入、解析的过程,并且这个过程是在UI线程完成的,对于性能是有所影响的。另外,也对接下来讨论的内容,Bitmap占用的内存有影响。

Bitmap到底占用多大的内存

Bitmap作为位图,需要读入一张图片每一个像素点的数据,其主要占用内存的地方也正是这些像素数据。对于像素数据总大小,我们可以猜想为:像素总数量 × 每个像素的字节大小,而像素总数量在矩形屏幕表现下,应该是:横向像素数量 × 纵向像素数量,结合得到:

Bitmap内存占用 ≈ 像素数据总大小 = 横向像素数量 × 纵向像素数量 × 每个像素的字节大小

单个像素的字节大小

单个像素的字节大小由Bitmap的一个可配置的参数Config来决定。
Bitmap中,存在一个枚举类Config,定义了Android中支持的Bitmap配置:

Config 占用字节大小(byte) 说明
ALPHA_8 (1) 1 单透明通道
RGB_565 (3) 2 简易RGB色调
ARGB_4444 (4) 4 已废弃
ARGB_8888 (5) 4 24位真彩色
RGBA_F16 (6) 8 Android 8.0 新增(更丰富的色彩表现HDR)
HARDWARE (7) Special Android 8.0 新增 (Bitmap直接存储在graphic memory)注1

注1:关于Android 8.0中新增的这个配置,stackoverflow已经有相关问题,可以关注下。

之前我们分析到,Bitmap的decode实际上是在native层完成的,因此在native层也存在对应的Config枚举类。
一般使用时,我们并未关注这个配置,在BitmapFactory中,有:

  * Image are loaded with the {@link Bitmap.Config#ARGB_8888} config by default.
  */
  public Bitmap.Config inPreferredConfig = Bitmap.Config.ARGB_8888;

因此,Android系统中,默认Bitmap加载图片,使用24位真彩色模式。

Bitmap占用内存大小实例

首先准备了一张800×600分辨率的jpg图片,大小约135k,放置于res/drawable文件夹下:

image

并将其加载到一个200dp×300dp大小的ImageView中,使用BitmapFactory。

Bitmap bitmapDecode = BitmapFactory.decodeResource(getResources(), resId);
imageView.setImageBitmap(bitmapDecode);

打印出相关信息:

图中显示了从资源文件中decode得到的bitmap的长、宽和占用内存大小(byte)等信息。
首先,从数据上可以验证:

17280000 = 2400 1800 4

这意味着,为了将单张800 * 600 的图片加载到内存当中,付出了近17.28M的代价,即使现在手机运存普遍上涨,这样的开销也是无法接受的,因此,对于Bitmap的使用,是需要非常小心的。好在,目前主流的图像加载库(Glide、Fresco等)基本上都不在需要开发者去关心Bitmap内存占用问题。
先暂时回到Bitmap占用内存的计算上来,对比之前定义的公式和源图片的尺寸数据,我们会发现,这张800 600大小的图片,decode到内存中的Bitmap的横纵像素数量实际是:2400 1800,相当于缩放了3倍大小。为了探究这缩放来自何处,我们开始跟踪源码:之前提到过,Bitmap的decode过程实际上是在native层完成的,为此,需要从BitmapFactory.cpp#nativeDecodeXXX方法开始跟踪,这里省略其他decode代码,直接贴出和缩放相关的代码如下:

if (env->GetBooleanField(options, gOptions_scaledFieldID)) {
    const int density = env->GetIntField(options, gOptions_densityFieldID);
    const int targetDensity = env->GetIntField(options, gOptions_targetDensityFieldID);
    const int screenDensity = env->GetIntField(options, gOptions_screenDensityFieldID);
    if (density != 0 && targetDensity != 0 && density != screenDensity) {
        scale = (float) targetDensity / density;
    }
}
...
int scaledWidth = decoded->width();
int scaledHeight = decoded->height();

if (willScale && mode != SkImageDecoder::kDecodeBounds_Mode) {
    scaledWidth = int(scaledWidth * scale + 0.5f);
    scaledHeight = int(scaledHeight * scale + 0.5f);
}
...
if (willScale) {
    const float sx = scaledWidth / float(decoded->width());
    const float sy = scaledHeight / float(decoded->height());
    bitmap->setConfig(decoded->getConfig(), scaledWidth, scaledHeight);
    bitmap->allocPixels(&javaAllocator, NULL);
    bitmap->eraseColor(0);
    SkPaint paint;
    paint.setFilterBitmap(true);
    SkCanvas canvas(*bitmap);
    canvas.scale(sx, sy);
    canvas.drawBitmap(*decoded, 0.0f, 0.0f, &paint);
}

从上述代码中,我们看到bitmap最终通过canvas绘制出来,而canvas在绘制之前,有一个scale的操作,scale的值由

scale = (float) targetDensity / density;

这一行代码决定,即缩放的倍率和targetDensity和density相关,而这两个参数都是从传入的options中获取到的。这时候,需要回到Java层,看看options这个对象的定义和赋值。

BitmapFactory#Options

Options是BitmapFactory中的一个静态内部类,用于配置Bitmap在decode时的一些参数。

// native层doDecode方法,传入了Options参数
static jobject doDecode(JNIEnv* env, SkStreamRewindable* stream, jobject padding, jobject options)

其内部有很多可配置的参数,下面的类图,列举出了部分常用的参数。

image

我们先关注之前提到的几个密度相关的参数,通过阅读源码的注释,大概可以知道这三个密度参数代表的涵义:

  • inDensity:Bitmap位图自身的密度、分辨率
  • inTargetDensity: Bitmap最终绘制的目标位置的分辨率
  • inScreenDensity: 设备屏幕分辨率

其中inDensity和图片存放的资源文件的目录有关,同一张图片放置在不同目录下会有不同的值:

density 0.75 1 1.5 2 3 3.5 4
densityDpi 120 160 240 320 480 560 640
DpiFolder ldpi mdpi hdpi xhdpi xxhdpi xxxhdpi xxxxhdpi

inTargetDensity和inScreenDensity一般来说,很少手动去赋值,默认情况下,是和设备分辨率保持一致。为此,我在手机(红米4,Android 6.0系统,设备dpi 480)上测试加载不同资源文件下的bitmap的参数,结果见下图:

image

以上可以验证几个结论:

  • 同一张图片,放在不同资源目录下,其分辨率会有变化,
  • bitmap分辨率越高,其解析后的宽高越小,甚至会小于图片原有的尺寸(即缩放),从而内存占用也相应减少
  • 图片不特别放置任何资源目录时,其默认使用mdpi分辨率:160
  • 资源目录分辨率和设备分辨率一致时,图片尺寸不会缩放

因此,关于Bitmap占用内存大小的公式,从之前:

Bitmap内存占用 ≈ 像素数据总大小 = 横向像素数量 × 纵向像素数量 × 每个像素的字节大小

可以更细化为:

Bitmap内存占用 ≈ 像素数据总大小 = 图片宽 × 图片高× (设备分辨率/资源目录分辨率)^2 × 每个像素的字节大小

对于本节中最开始的例子,如下:

17,280,000 = 800 600 (480 / 160 )^2 * 4

Bitmap内存优化

图片占用的内存一般会分为运行时占用的运存和存储时本地开销(反映在包大小上),这里我们只关注运行时占用内存的优化。
在上一节中,我们看到对于一张800 * 600 大小的图片,不加任何处理直接解析到内存中,将近占用了17.28M的内存大小。想象一下这样的开销发生在一个图片列表中,内存占用将达到非常夸张的地步。从之前Bitmap占用内存的计算公式来看,减少内存主要可以通过以下几种方式:

  1. 使用低色彩的解析模式,如RGB565,减少单个像素的字节大小
  2. 资源文件合理放置,高分辨率图片可以放到高分辨率目录下
  3. 图片缩小,减少尺寸

第一种方式,大约能减少一半的内存开销。Android默认是使用ARGB8888配置来处理色彩,占用4字节,改用RGB565,将只占用2字节,代价是显示的色彩将相对少,适用于对色彩丰富程度要求不高的场景。
第二种方式,和图片的具体分辨率有关,建议开发中,高分辨率的图像应该放置到合理的资源目录下,注意到Android默认放置的资源目录是对应于160dpi,目前手机屏幕分辨率越来越高,此处能节省下来的开销也是很可观的。理论上,图片放置的资源目录分辨率越高,其占用内存会越小,但是低分辨率图片会因此被拉伸,显示上出现失真。另一方面,高分辨率图片也意味着其占用的本地储存也变大。
第三种方式,理论上根据适用的环境,是可以减少十几倍的内存使用的,它基于这样一个事实:源图片尺寸一般都大于目标需要显示的尺寸,因此可以通过缩放的方式,来减少显示时的图片宽高,从而大大减少占用的内存。

前两种方式,相对比较简单。第三种方式会涉及到一些编码,目前也有很多典型的使用方式,如下:

BitmapFactory.Options options = new BitmapFactory.Options();
options.inPreferredConfig = Bitmap.Config.RGB_565;
options.inJustDecodeBounds = true;
BitmapFactory.decodeResource(getResources(), resId,options);
options.inJustDecodeBounds = false;
options.inSampleSize = BitmapUtil.computeSampleSize(options, -1, imageView.getWidth() * imageView.getHeight());
Bitmap newBitmap = BitmapFactory.decodeResource(getResources(), resId, options);

原理很简单,充分利用了Options类里的参数设置,也可以从native底层源码上看到对应的逻辑。第一次解析bitmap只获取尺寸信息,不生成像素数据,继而比较bitmap尺寸和目标尺寸得到缩放倍数,第二次根据缩放倍数去解析我们实际需要的尺寸大小。

// Apply a fine scaling step if necessary.
    if (needsFineScale(codec->getInfo().dimensions(), size, sampleSize)) {
        willScale = true;
        scaledWidth = codec->getInfo().width() / sampleSize;
        scaledHeight = codec->getInfo().height() / sampleSize;
    }

上图是使用上述手段优化后的结果,可以看到现在占用的内存大小大约为960KB,从优化后的宽高来看,第三种方式并没有效果。应为目标ImageView尺寸也不小,而inSampleSize的值必须是2的整数幂,因此计算得到的值还是1。

PS: Bitmap内存占用的优化还有一个方式是复用和缓存

不同Android版本时的Bitmap内存模型

我们知道Android系统中,一个进程的内存可以简单分为Java内存和native内存两部分,而Bitmap对象占用的内存,有Bitmap对象内存和像素数据内存两部分,在不同的Android系统版本中,其所存放的位置也有变化。Android Developers上列举了从API 8 到API 26之间的分配方式:

API级别 API 10 - API 11 ~ API 25 API 26 +
Bitmap对象存放 Java heap Java heap Java heap
像素(pixel data)数据存放 native heap Java heap native heap

可以看到,最新的Android O之后,谷歌又把像素存放的位置,从java 堆改回到了 native堆。API 11的那次改动,是源于native的内存释放不及时,会导致OOM,因此才将像素数据保存到Java堆,从而保证Bitmap对象释放时,能够同时把像素数据内存也释放掉。

上面两幅图展示了不同系统,加载图片后,内存的变化,8.0的截图比较模糊。途中浅蓝色对应的是Java heap使用,深蓝色对应的是native heap的使用。
跟踪一下8.0的native源码来看看具体的变化:

// BitmapFactory.cpp
    if (!decodingBitmap.setInfo(bitmapInfo) ||
            !decodingBitmap.tryAllocPixels(decodeAllocator, colorTable.get())) {
        // SkAndroidCodec should recommend a valid SkImageInfo, so setInfo()
        // should only only fail if the calculated value for rowBytes is too
        // large.
        // tryAllocPixels() can fail due to OOM on the Java heap, OOM on the
        // native heap, or the recycled javaBitmap being too small to reuse.
        return nullptr;
    }

// Graphics.cpp
bool HeapAllocator::allocPixelRef(SkBitmap* bitmap, SkColorTable* ctable) {
    mStorage = android::Bitmap::allocateHeapBitmap(bitmap, sk_ref_sp(ctable));
    return !!mStorage;
}

// https://android.googlesource.com/platform/frameworks/base/+/master/libs/hwui/hwui/Bitmap.cpp
static sk_sp<Bitmap> allocateHeapBitmap(size_t size, const SkImageInfo& info, size_t rowBytes) {
    void* addr = calloc(size, 1);
    if (!addr) {
        return nullptr;
    }
    return sk_sp<Bitmap>(new Bitmap(addr, size, info, rowBytes));
}

还是通过BitmapFactory.cpp#doDecode方法来跟踪,发现其中tryAllocPixels方法,应该是尝试去进行内存分配,其中decodeAllocator会被赋值为HeapAllocator,通过一系列的调用,最终通过calloc方法,在native分配内存。
至于为什么Google 在8.0上改变了Bitmap像素数据的存放方式,我猜想和8.0中的GC算法调整有关系。GC算法的优化,使得Bitmap占用的大内存区域,在GC后也能够比较快速的回收、压缩,重新使用。

(native存放) 退出Activity 退出App
onStop中主动调用gc()和recycler() 内存不释放 内存释放
无调用 内存不释放 内存不释放
(gpu存放) 退出Activity 退出App
onStop中主动调用gc()和recycler() 内存释放 内存释放
无调用 内存释放 内存释放

总结

// 8.0源码
    Bitmap(long nativeBitmap, int width, int height, int density,
            boolean isMutable, boolean requestPremultiplied,
            byte[] ninePatchChunk, NinePatch.InsetStruct ninePatchInsets)
// 7.0源码
Bitmap(long nativeBitmap, byte[] buffer, int width, int height, int density,
            boolean isMutable, boolean requestPremultiplied,
            byte[] ninePatchChunk, NinePatch.InsetStruct ninePatchInsets)

一开始看两者java代码不同,少了存放像素的buffer字段,查阅相关资料到native源码对比,最终总结了下Bitmap内存相关的知识。另外,在Android 8.0中,关于Bitmap的改动有两方面还需深入探究的:1、Config配置为Hardware时的优劣。Hardware配置实际上没有改变像素的位储存大小(还是默认的ARGB8888),但是改变了bitmap像素的存储位置(存放到GPU内存中),对实际应用的影响会如何?;2、Bitmap在8.0后又回归到native存放bitmap像素数据,而这部分数据的回收时机和触发方式又是如何?一般测试下,可以通过native分配Bitmap超过1G的内存数据而不发生崩溃。

作者:Dragon_Boat
链接:https://www.jianshu.com/p/3f6f6e4f1c88
来源:简书

相关文章
|
3月前
|
存储 前端开发 Java
Android MVVM架构模式下如何避免内存泄漏
Android采用MVVM架构开发项目,如何避免内存泄漏风险?怎样避免内存泄漏?
123 1
|
1月前
|
监控 Java Android开发
深入探索Android系统的内存管理机制
本文旨在全面解析Android系统的内存管理机制,包括其工作原理、常见问题及其解决方案。通过对Android内存模型的深入分析,本文将帮助开发者更好地理解内存分配、回收以及优化策略,从而提高应用性能和用户体验。
|
2月前
|
监控 Java Android开发
深入探讨Android系统的内存管理机制
本文将深入分析Android系统的内存管理机制,包括其内存分配、回收策略以及常见的内存泄漏问题。通过对这些方面的详细讨论,读者可以更好地理解Android系统如何高效地管理内存资源,从而提高应用程序的性能和稳定性。
91 16
|
2月前
|
Android开发 开发者
Android性能优化——内存管理的艺术
Android性能优化——内存管理的艺术
|
4月前
|
存储 缓存 编解码
Android经典面试题之图片Bitmap怎么做优化
本文介绍了图片相关的内存优化方法,包括分辨率适配、图片压缩与缓存。文中详细讲解了如何根据不同分辨率放置图片资源,避免图片拉伸变形;并通过示例代码展示了使用`BitmapFactory.Options`进行图片压缩的具体步骤。此外,还介绍了Glide等第三方库如何利用LRU算法实现高效图片缓存。
80 20
Android经典面试题之图片Bitmap怎么做优化
|
3月前
|
编解码 Android开发 UED
构建高效Android应用:从内存优化到用户体验
【10月更文挑战第11天】本文探讨了如何通过内存优化和用户体验改进来构建高效的Android应用。介绍了使用弱引用来减少内存占用、懒加载资源以降低启动时内存消耗、利用Kotlin协程进行异步处理以保持UI流畅,以及采用响应式设计适配不同屏幕尺寸等具体技术手段。
59 2
|
4月前
|
Java 测试技术 Android开发
Android性能测试——发现和定位内存泄露和卡顿
本文详细介绍了Android应用性能测试中的内存泄漏与卡顿问题及其解决方案。首先,文章描述了使用MAT工具定位内存泄漏的具体步骤,并通过实例展示了如何分析Histogram图表和Dominator Tree。接着,针对卡顿问题,文章探讨了其产生原因,并提供了多种测试方法,包括GPU呈现模式分析、FPS Meter软件测试、绘制圆点计数法及Android Studio自带的GPU监控功能。最后,文章给出了排查卡顿问题的四个方向,帮助开发者优化应用性能。
244 4
Android性能测试——发现和定位内存泄露和卡顿
|
4月前
|
监控 算法 数据可视化
深入解析Android应用开发中的高效内存管理策略在移动应用开发领域,Android平台因其开放性和灵活性备受开发者青睐。然而,随之而来的是内存管理的复杂性,这对开发者提出了更高的要求。高效的内存管理不仅能够提升应用的性能,还能有效避免因内存泄漏导致的应用崩溃。本文将探讨Android应用开发中的内存管理问题,并提供一系列实用的优化策略,帮助开发者打造更稳定、更高效的应用。
在Android开发中,内存管理是一个绕不开的话题。良好的内存管理机制不仅可以提高应用的运行效率,还能有效预防内存泄漏和过度消耗,从而延长电池寿命并提升用户体验。本文从Android内存管理的基本原理出发,详细讨论了几种常见的内存管理技巧,包括内存泄漏的检测与修复、内存分配与回收的优化方法,以及如何通过合理的编程习惯减少内存开销。通过对这些内容的阐述,旨在为Android开发者提供一套系统化的内存优化指南,助力开发出更加流畅稳定的应用。
92 0
|
存储 编解码 Android开发
Android内存优化-Bitmap内存优化
在日常开发中,我们不免会使用到Bitmap,而bitmap确实实在在的是内存使用的 “大户”,如何更好的使用 bitmap,减少其对 App内存的使用,是我们开发中不可回避的问题。
192 0
Android内存优化-Bitmap内存优化