Redis(十二):redis请求转发的实现
目录
- 集群模式下的命令转发如何实现?
- 主从模式的命令转发如何实现?
3. 如何使用redis集群?
4. 通常的请求转发如何实现?
请求转发一般的原因为: 1. 该请求自身无法处理,需要转发给对应的服务器处理; 2. 为实现负载均衡,使用路由服务,选择目标实例进行转发;
在集群模式下,请求可以打到任何一台redis服务器上。然而并不是所有的服务器都会处理真正的请求,而是只有符合redis slot规则的实例才会处理真正的请求;
这就存在一个情况,当请求打到了一台不应该打到的redis实例上,它应该是要进行转发的。
那么,这个转发该如何做呢?
返回顶部
- 集群模式下的命令转发如何实现?
// server.c, 在统一处理请求时,会判断出集群模式,进行处理
int processCommand(client *c) {
...
/* If cluster is enabled perform the cluster redirection here.
* However we don't perform the redirection if:
* 1) The sender of this command is our master.
* 2) The command has no key arguments. */
// 集群模下,根据 hashslot 找到对应的redis节点处理
if (server.cluster_enabled &&
!(c->flags & CLIENT_MASTER) &&
!(c->flags & CLIENT_LUA &&
server.lua_caller->flags & CLIENT_MASTER) &&
!(c->cmd->getkeys_proc == NULL && c->cmd->firstkey == 0))
{
int hashslot;
if (server.cluster->state != CLUSTER_OK) {
flagTransaction(c);
clusterRedirectClient(c,NULL,0,CLUSTER_REDIR_DOWN_STATE);
return C_OK;
} else {
int error_code;
// 查找相应的redis节点
clusterNode *n = getNodeByQuery(c,c->cmd,c->argv,c->argc,&hashslot,&error_code);
// 除非是应该自己处理的数据,否则响应数据节点不在此处,让客户端另外查找数据节点
// 因此 redis 节点不做数据转发,只是提示客户再寻找
// 客户端拿送返回的信息,再向对应的节点发起请求处理
if (n == NULL || n != server.cluster->myself) {
flagTransaction(c);
clusterRedirectClient(c,n,hashslot,error_code);
return C_OK;
}
}
}
...
}
// cluster.c, 查找key对应的redis节点
/* Return the pointer to the cluster node that is able to serve the command.
- For the function to succeed the command should only target either:
* - 1) A single key (even multiple times like LPOPRPUSH mylist mylist).
- 2) Multiple keys in the same hash slot, while the slot is stable (no
- resharding in progress).
* - On success the function returns the node that is able to serve the request.
- If the node is not 'myself' a redirection must be perfomed. The kind of
- redirection is specified setting the integer passed by reference
- 'error_code', which will be set to CLUSTER_REDIR_ASK or
- CLUSTER_REDIR_MOVED.
* - When the node is 'myself' 'error_code' is set to CLUSTER_REDIR_NONE.
* - If the command fails NULL is returned, and the reason of the failure is
- provided via 'error_code', which will be set to:
* - CLUSTER_REDIR_CROSS_SLOT if the request contains multiple keys that
- don't belong to the same hash slot.
* - CLUSTER_REDIR_UNSTABLE if the request contains multiple keys
- belonging to the same slot, but the slot is not stable (in migration or
- importing state, likely because a resharding is in progress).
* - CLUSTER_REDIR_DOWN_UNBOUND if the request addresses a slot which is
- not bound to any node. In this case the cluster global state should be
- already "down" but it is fragile to rely on the update of the global state,
-
so we also handle it here. */
clusterNode getNodeByQuery(client c, struct redisCommand cmd, robj argv, int argc, int hashslot, int *error_code) {
clusterNode *n = NULL;
robj *firstkey = NULL;
int multiple_keys = 0;
multiState *ms, _ms;
multiCmd mc;
int i, slot = 0, migrating_slot = 0, importing_slot = 0, missing_keys = 0;/ Set error code optimistically for the base case. /
if (error_code) *error_code = CLUSTER_REDIR_NONE;/* We handle all the cases as if they were EXEC commands, so we have
-
- a common code path for everything */
-
(cmd->proc == execCommand) {
/* If CLIENT_MULTI flag is not set EXEC is just going to return an* error. */
if (!(c->flags & CLIENT_MULTI)) return myself;
ms = &c->mstate;
} else {
/* In order to have a single codepath create a fake Multi State* structure if the client is not in MULTI/EXEC state, this way * we have a single codepath below. */
ms = &_ms;
_ms.commands = &mc;
_ms.count = 1;
mc.argv = argv;
mc.argc = argc;
mc.cmd = cmd;
}
/* Check that all the keys are in the same hash slot, and obtain this
- slot and the node associated. */
-
(i = 0; i < ms->count; i++) {
struct redisCommand *mcmd;
robj **margv;
int margc, *keyindex, numkeys, j;mcmd = ms->commands[i].cmd;
margc = ms->commands[i].argc;
margv = ms->commands[i].argv;
// 获取所有的 keyIndex, 用于后续依次取 key
keyindex = getKeysFromCommand(mcmd,margv,margc,&numkeys);
for (j = 0; j < numkeys; j++) {robj *thiskey = margv[keyindex[j]]; // 计算hashSlot, crc16 算法 int thisslot = keyHashSlot((char*)thiskey->ptr, sdslen(thiskey->ptr)); if (firstkey == NULL) { /* This is the first key we see. Check what is the slot * and node. */ firstkey = thiskey; slot = thisslot; n = server.cluster->slots[slot]; /* Error: If a slot is not served, we are in "cluster down" * state. However the state is yet to be updated, so this was * not trapped earlier in processCommand(). Report the same * error to the client. */ if (n == NULL) { getKeysFreeResult(keyindex); if (error_code) *error_code = CLUSTER_REDIR_DOWN_UNBOUND; return NULL; } /* If we are migrating or importing this slot, we need to check * if we have all the keys in the request (the only way we * can safely serve the request, otherwise we return a TRYAGAIN * error). To do so we set the importing/migrating state and * increment a counter for every missing key. */ if (n == myself && server.cluster->migrating_slots_to[slot] != NULL) { migrating_slot = 1; } else if (server.cluster->importing_slots_from[slot] != NULL) { importing_slot = 1; } } else { /* If it is not the first key, make sure it is exactly * the same key as the first we saw. */ if (!equalStringObjects(firstkey,thiskey)) { if (slot != thisslot) { /* Error: multiple keys from different slots. */ getKeysFreeResult(keyindex); if (error_code) *error_code = CLUSTER_REDIR_CROSS_SLOT; return NULL; } else { /* Flag this request as one with multiple different * keys. */ multiple_keys = 1; } } } /* Migarting / Improrting slot? Count keys we don't have. */ // 查找0号库是否存在该值,没找到则增加未命中率 if ((migrating_slot || importing_slot) && lookupKeyRead(&server.db[0],thiskey) == NULL) { missing_keys++; }
}
getKeysFreeResult(keyindex);
}
/* No key at all in command? then we can serve the request
- without redirections or errors. */
- (n == NULL) return myself;
/ Return the hashslot by reference. /
if (hashslot) *hashslot = slot;
/* MIGRATE always works in the context of the local node if the slot
- is open (migrating or importing state). We need to be able to freely
- move keys among instances in this case. */
- ((migrating_slot || importing_slot) && cmd->proc == migrateCommand)
return myself;
/* If we don't have all the keys and we are migrating the slot, send
- an ASK redirection. */
- (migrating_slot && missing_keys) {
if (error_code) *error_code = CLUSTER_REDIR_ASK;
return server.cluster->migrating_slots_to[slot];
}
/* If we are receiving the slot, and the client correctly flagged the
- request as "ASKING", we can serve the request. However if the request
- involves multiple keys and we don't have them all, the only option is
- to send a TRYAGAIN error. */
-
(importing_slot &&
(c->flags & CLIENT_ASKING || cmd->flags & CMD_ASKING))
{
if (multiple_keys && missing_keys) {if (error_code) *error_code = CLUSTER_REDIR_UNSTABLE; return NULL;
} else {
return myself;
}
}
/* Handle the read-only client case reading from a slave: if this
- node is a slave and the request is about an hash slot our master
- is serving, we can reply without redirection. */
- (c->flags & CLIENT_READONLY &&
cmd->flags & CMD_READONLY &&
nodeIsSlave(myself) &&
myself->slaveof == n)
{
return myself;
}
/* Base case: just return the right node. However if this node is not
- myself, set error_code to MOVED since we need to issue a rediretion. */
- (n != myself && error_code) *error_code = CLUSTER_REDIR_MOVED;
return n;
}
// cluster.c, 计算hashSlot, 使用 crc16算法
// 特殊语法: {key_with_hash}key_without_hash
/* We have 16384 hash slots. The hash slot of a given key is obtained
- as the least significant 14 bits of the crc16 of the key.
* - However if the key contains the {...} pattern, only the part between
- { and } is hashed. This may be useful in the future to force certain
- keys to be in the same node (assuming no resharding is in progress). */
-
int keyHashSlot(char *key, int keylen) {
int s, e; / start-end indexes of { and } /for (s = 0; s < keylen; s++)
if (key[s] == '{') break;
/ No '{' ? Hash the whole key. This is the base case. /
if (s == keylen) return crc16(key,keylen) & 0x3FFF;/ '{' found? Check if we have the corresponding '}'. /
for (e = s+1; e < keylen; e++)if (key[e] == '}') break;
/ No '}' or nothing betweeen {} ? Hash the whole key. /
if (e == keylen || e == s+1) return crc16(key,keylen) & 0x3FFF;/* If we are here there is both a { and a } on its right. Hash
* what is in the middle between { and }. */
return crc16(key+s+1,e-s-1) & 0x3FFF;
}
// 根据状态值,响应客户端,数据节点不在本节点
/* Send the client the right redirection code, according to error_code
- that should be set to one of CLUSTER_REDIR_* macros.
* - If CLUSTER_REDIR_ASK or CLUSTER_REDIR_MOVED error codes
- are used, then the node 'n' should not be NULL, but should be the
- node we want to mention in the redirection. Moreover hashslot should
- be set to the hash slot that caused the redirection. */
-
clusterRedirectClient(client c, clusterNode n, int hashslot, int error_code) {
if (error_code == CLUSTER_REDIR_CROSS_SLOT) {addReplySds(c,sdsnew("-CROSSSLOT Keys in request don't hash to the same slot\r\n"));
} else if (error_code == CLUSTER_REDIR_UNSTABLE) {
/* The request spawns mutliple keys in the same slot, * but the slot is not "stable" currently as there is * a migration or import in progress. */ addReplySds(c,sdsnew("-TRYAGAIN Multiple keys request during rehashing of slot\r\n"));
} else if (error_code == CLUSTER_REDIR_DOWN_STATE) {
addReplySds(c,sdsnew("-CLUSTERDOWN The cluster is down\r\n"));
} else if (error_code == CLUSTER_REDIR_DOWN_UNBOUND) {
addReplySds(c,sdsnew("-CLUSTERDOWN Hash slot not served\r\n"));
} else if (error_code == CLUSTER_REDIR_MOVED ||
error_code == CLUSTER_REDIR_ASK)
{
// 当对应的数据节点不是自身,而且已经找到了应当处理的节点时,响应客户端对应信息 // ASK错误说明数据正在迁移,不知道何时迁移完成,因此重定向是临时的,不应刷新slot缓存 // MOVED错误重定向则是(相对)永久的,应刷新slot缓存 addReplySds(c,sdscatprintf(sdsempty(), "-%s %d %s:%d\r\n", (error_code == CLUSTER_REDIR_ASK) ? "ASK" : "MOVED", hashslot,n->ip,n->port));
} else {
serverPanic("getNodeByQuery() unknown error.");
}
}
所以,redis集群模式下的请求转发,并非redis服务端直接转发请求,而是通过向客户端响应 转移指令,由客户端重新发起目标请求,从而实现命令转发的。
其实,redis做响应转移的处理,应只会发生在redis节点发生变更的时候,比如增加节点或减少节点时,redis为实现数据再均衡,才会出现。正常情况下,具体哪个数据应该请求向哪个redis节点,则完全由客户端负责。这也是集群的优势所在,各个数据节点只处理对应的范围数据。因此,需要客户端将服务端的slot存放规则或者位置缓存起来(通过 cluster slots 可以获取槽存放信息),从而实现向正确的节点请求操作。
返回顶部
- 主从模式的命令转发如何实现?
主从模式下,只有主节点可以写请求,而从节点则负责同步主节点的数据即可。然而,在我们做读写分离的时候,从节点是可以承受读流量的。但是,如果写流程打到了从节点上,这是否又涉及到一个请求转发呢?我们来看一下:
// 主从的命令处理判断,也是在 processCommand 中统一处理的
int processCommand(client *c) {
...
/* Don't accept write commands if this is a read only slave. But
* accept write commands if this is our master. */
// 针对从节点,只能接受读请求,如果是写请求,直接响应
if (server.masterhost && server.repl_slave_ro &&
// master 请求除外,因为master过来的请求,是用于同步数据的
!(c->flags & CLIENT_MASTER) &&
c->cmd->flags & CMD_WRITE)
{
// -READONLY You can't write against a read only slave.
addReply(c, shared.roslaveerr);
return C_OK;
}
...
return C_OK;
}
所以,redis主从模式下,服务端并不做转发处理。而要实现读写分离的功能,必然要客户端自行处理了。比如要自行定位master节点,然后将写请求发送过去,读请求则可以做负载均衡处理。这也是很多数据库中间件的职责所在。
返回顶部
3. 如何使用redis集群?
redis集群,本质上提供了数据的分片存储能力(当然要实现这个功能有相当多的工作要做),但是访问数据需要客户端自行处理。所以,我们以jedis作为客户端,看看客户端都是如何利用集群的吧!测试用例如下:
@Test
public void testCluster() throws Exception {
// 添加集群的服务节点Set集合
Set<HostAndPort> hostAndPortsSet = new HashSet<HostAndPort>();
// 添加节点
hostAndPortsSet.add(new HostAndPort("192.168.1.103", 7000));
hostAndPortsSet.add(new HostAndPort("192.168.1.103", 7001));
hostAndPortsSet.add(new HostAndPort("192.168.1.103", 8000));
hostAndPortsSet.add(new HostAndPort("192.168.1.103", 8001));
hostAndPortsSet.add(new HostAndPort("192.168.1.103", 9000));
hostAndPortsSet.add(new HostAndPort("192.168.1.103", 9001));
// Jedis连接池配置
JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
// 最大空闲连接数, 默认8个
jedisPoolConfig.setMaxIdle(5);
// 最大连接数, 默认8个
jedisPoolConfig.setMaxTotal(10);
//最小空闲连接数, 默认0
jedisPoolConfig.setMinIdle(0);
// 获取连接时的最大等待毫秒数(如果设置为阻塞时BlockWhenExhausted),如果超时就抛异常, 小于零:阻塞不确定的时间, 默认-1
jedisPoolConfig.setMaxWaitMillis(2000);
//对拿到的connection进行validateObject校验
jedisPoolConfig.setTestOnBorrow(true);
// JedisCluster 会继承 JedisSlotBasedConnectionHandler, 即会处理 slot 定位问题
JedisCluster jedis = new JedisCluster(hostAndPortsSet, jedisPoolConfig);
String key = "key1";
String value = "Value1";
jedis.set(key, value);
System.out.println("set a value to Redis over. " + key + "->" + value);
value = jedis.get("key1");
System.out.println("get a value from Redis over. " + key + "->" + value);
jedis.close();
}
如上,就是jedis访问redis集群的方式了,sdk封装之后的应用,总是简单易用。主要就是通过 JedisCluster 进行访问即可。而与单机的redis访问的很大不同点,是在于数据key的定位上,我们可以详细看看。
如下是 JedisCluster 的类继承图:
与之对比的是 Jedis 的类继承图:
它们两个都实现的接口有: BasicCommands, Closeable, JedisCommands.
可见,cluster下的redis操作上,与普通的redis还是有许多不同的。不过,我们只想探讨的是,key如何定位的问题,所以一个set/get就够了。
// JedisCluster 初始化时会初始化 slot 信息到本地缓存中
// redis.clients.jedis.JedisClusterConnectionHandler#JedisClusterConnectionHandler
public JedisClusterConnectionHandler(Set nodes,
final GenericObjectPoolConfig poolConfig, int connectionTimeout, int soTimeout, String password) {
this.cache = new JedisClusterInfoCache(poolConfig, connectionTimeout, soTimeout, password);
// 在初始化 JedisCluster 时,会先触发一次 slot 信息的拉取,以备后续使用
initializeSlotsCache(nodes, poolConfig, password);
}
private void initializeSlotsCache(Set startNodes, GenericObjectPoolConfig poolConfig, String password) {
for (HostAndPort hostAndPort : startNodes) {
Jedis jedis = new Jedis(hostAndPort.getHost(), hostAndPort.getPort());
if (password != null) {
jedis.auth(password);
}
try {
// 只要某个节点成功响应,就够了
// 遍历的目的,是为了高可用保证,为了避免某些节点故障而拿不到信息
cache.discoverClusterNodesAndSlots(jedis);
break;
} catch (JedisConnectionException e) {
// try next nodes
} finally {
if (jedis != null) {
jedis.close();
}
}
}
}
// set 的操作,则是使用 JedisClusterCommand 包装了一层 Jedis
// redis.clients.jedis.JedisCluster#set(java.lang.String, java.lang.String)
@Override
public String set(final String key, final String value) {
// connectionHandler 是 JedisSlotBasedConnectionHandler 的实例
// 默认重试次数: 5
return new JedisClusterCommand<String>(connectionHandler, maxAttempts) {
@Override
public String execute(Jedis connection) {
return connection.set(key, value);
}
}.run(key);
}
// redis.clients.jedis.JedisClusterCommand#run(java.lang.String)
public T run(String key) {
if (key == null) {
throw new JedisClusterException("No way to dispatch this command to Redis Cluster.");
}
return runWithRetries(SafeEncoder.encode(key), this.maxAttempts, false, false);
}
// 带重试的访问 redis 节点, 重试的场景有:数据节点不在访问节点; 访问的节点正在进行数据迁移; 访问节点不可用;
// redis.clients.jedis.JedisClusterCommand#runWithRetries
private T runWithRetries(byte[] key, int attempts, boolean tryRandomNode, boolean asking) {
if (attempts <= 0) {
throw new JedisClusterMaxRedirectionsException("Too many Cluster redirections?");
}
Jedis connection = null;
try {
if (asking) {
// TODO: Pipeline asking with the original command to make it
// faster....
connection = askConnection.get();
connection.asking();
// if asking success, reset asking flag
asking = false;
} else {
if (tryRandomNode) {
connection = connectionHandler.getConnection();
} else {
// 直接调用 connectionHandler.getConnectionFromSlot 获取对应的redis连接
// 此处计算的 slot 就是redis服务端实现的那套 crc16 % 0x3FFF, 即各端保持一致,就可以做出相同的判定了
connection = connectionHandler.getConnectionFromSlot(JedisClusterCRC16.getSlot(key));
}
}
return execute(connection);
} catch (JedisNoReachableClusterNodeException jnrcne) {
throw jnrcne;
} catch (JedisConnectionException jce) {
// release current connection before recursion
releaseConnection(connection);
connection = null;
if (attempts <= 1) {
//We need this because if node is not reachable anymore - we need to finally initiate slots renewing,
//or we can stuck with cluster state without one node in opposite case.
//But now if maxAttempts = 1 or 2 we will do it too often. For each time-outed request.
//TODO make tracking of successful/unsuccessful operations for node - do renewing only
//if there were no successful responses from this node last few seconds
this.connectionHandler.renewSlotCache();
//no more redirections left, throw original exception, not JedisClusterMaxRedirectionsException, because it's not MOVED situation
throw jce;
}
// 连接异常,再次请求随机节点
return runWithRetries(key, attempts - 1, tryRandomNode, asking);
} catch (JedisRedirectionException jre) {
// if MOVED redirection occurred,
if (jre instanceof JedisMovedDataException) {
// it rebuilds cluster's slot cache
// recommended by Redis cluster specification
this.connectionHandler.renewSlotCache(connection);
}
// release current connection before recursion or renewing
releaseConnection(connection);
connection = null;
if (jre instanceof JedisAskDataException) {
asking = true;
askConnection.set(this.connectionHandler.getConnectionFromNode(jre.getTargetNode()));
} else if (jre instanceof JedisMovedDataException) {
} else {
throw new JedisClusterException(jre);
}
// 收到 MOVED/ASK 响应,刷新slot信息后,重新再访问
return runWithRetries(key, attempts - 1, false, asking);
} finally {
releaseConnection(connection);
}
}
// 计算hashSlot值
// redis.clients.util.JedisClusterCRC16#getSlot(byte[])
public static int getSlot(byte[] key) {
int s = -1;
int e = -1;
boolean sFound = false;
for (int i = 0; i < key.length; i++) {
if (key[i] == '{' && !sFound) {
s = i;
sFound = true;
}
if (key[i] == '}' && sFound) {
e = i;
break;
}
}
if (s > -1 && e > -1 && e != s + 1) {
return getCRC16(key, s + 1, e) & (16384 - 1);
}
return getCRC16(key) & (16384 - 1);
}
// 根据hashSlot, 得到对应的 redis 连接实例
@Override
public Jedis getConnectionFromSlot(int slot) {
// 先从缓存中获取slot对应的连接信息,初始时自然是空的
JedisPool connectionPool = cache.getSlotPool(slot);
if (connectionPool != null) {
// It can't guaranteed to get valid connection because of node
// assignment
return connectionPool.getResource();
} else {
// 刷新slot缓存信息,大概就是请求 cluster slot, 获取slot的分布信息,然后存入JedisClusterInfoCache中
renewSlotCache(); //It's abnormal situation for cluster mode, that we have just nothing for slot, try to rediscover state
connectionPool = cache.getSlotPool(slot);
// 如果还是获取不到,则随机选择一个连接
// 此时请求该随机节点,服务端有可能会响应正确的节点位置信息
if (connectionPool != null) {
return connectionPool.getResource();
} else {
//no choice, fallback to new connection to random node
return getConnection();
}
}
}
// redis.clients.jedis.JedisClusterConnectionHandler#renewSlotCache()
public void renewSlotCache() {
cache.renewClusterSlots(null);
}
// redis.clients.jedis.JedisClusterInfoCache#renewClusterSlots
public void renewClusterSlots(Jedis jedis) {
//If rediscovering is already in process - no need to start one more same rediscovering, just return
if (!rediscovering) {
try {
w.lock();
rediscovering = true;
if (jedis != null) {
try {
discoverClusterSlots(jedis);
return;
} catch (JedisException e) {
//try nodes from all pools
}
}
// 依次遍历集群节点,直到有一个正确的响应为止
for (JedisPool jp : getShuffledNodesPool()) {
try {
jedis = jp.getResource();
discoverClusterSlots(jedis);
return;
} catch (JedisConnectionException e) {
// try next nodes
} finally {
if (jedis != null) {
jedis.close();
}
}
}
} finally {
rediscovering = false;
w.unlock();
}
}
}
private void discoverClusterSlots(Jedis jedis) {
// 发送 cluster slots, 命令,获取 slot 分布信息
List<Object> slots = jedis.clusterSlots();
this.slots.clear();
for (Object slotInfoObj : slots) {
List<Object> slotInfo = (List<Object>) slotInfoObj;
/* Format: 1) 1) start slot
* 2) end slot
* 3) 1) master IP
* 2) master port
* 3) node ID
* 4) 1) replica IP
* 2) replica port
* 3) node ID
* ... continued until done
*/
if (slotInfo.size() <= MASTER_NODE_INDEX) {
continue;
}
List<Integer> slotNums = getAssignedSlotArray(slotInfo);
// hostInfos
// 第三个元素是 master 信息
List<Object> hostInfos = (List<Object>) slotInfo.get(MASTER_NODE_INDEX);
if (hostInfos.isEmpty()) {
continue;
}
// at this time, we just use master, discard slave information
HostAndPort targetNode = generateHostAndPort(hostInfos);
// 只存储master信息
assignSlotsToNode(slotNums, targetNode);
}
}
private List getAssignedSlotArray(List
List<Integer> slotNums = new ArrayList<Integer>();
// 依次将所管辖slot范围,添加到列表中
// 如 0 ~ 5999
for (int slot = ((Long) slotInfo.get(0)).intValue(); slot <= ((Long) slotInfo.get(1))
.intValue(); slot++) {
slotNums.add(slot);
}
return slotNums;
}
// 将所有给定的 slot, 放到 targetNode 的管辖范围,方便后续获取
// redis.clients.jedis.JedisClusterInfoCache#assignSlotsToNode
public void assignSlotsToNode(List targetSlots, HostAndPort targetNode) {
// 此处的锁为读写锁 ReentrantReadWriteLock 中的 writeLock
w.lock();
try {
// 创建redis连接
JedisPool targetPool = setupNodeIfNotExist(targetNode);
// 依次将范围内的slot指向 targetNode
// 正常情况下,slots的大小应该都是16384
for (Integer slot : targetSlots) {
// slots = new HashMap<Integer, JedisPool>();
slots.put(slot, targetPool);
}
} finally {
w.unlock();
}
}
// redis.clients.jedis.JedisClusterInfoCache#setupNodeIfNotExist(redis.clients.jedis.HostAndPort)
public JedisPool setupNodeIfNotExist(HostAndPort node) {
w.lock();
try {
String nodeKey = getNodeKey(node);
JedisPool existingPool = nodes.get(nodeKey);
if (existingPool != null) return existingPool;
JedisPool nodePool = new JedisPool(poolConfig, node.getHost(), node.getPort(),
connectionTimeout, soTimeout, password, 0, null, false, null, null, null);
nodes.put(nodeKey, nodePool);
return nodePool;
} finally {
w.unlock();
}
}
// 刷新slot缓存信息后,再重新请求获取redis连接就简单了
// redis.clients.jedis.JedisClusterInfoCache#getSlotPool
public JedisPool getSlotPool(int slot) {
r.lock();
try {
return slots.get(slot);
} finally {
r.unlock();
}
}
从上面的描述,我们清楚了整个客户如何处理集群请求的。整体就两个步骤: 1. 通过 cluster slot 获取redis集群的slot分布信息,然后缓存到本地; 2. 根据slot分布信息,向对应的redis节点发起请求即可。
另外,还有些意外情况,即客户端拿到的 slot 信息如果是错误的怎么办?如何保持客户端缓存与服务端的一致性?
事实上,客户端既不保证slot信息的准确性,也不保证与服务端数据的一致性,而是在发生错误的时候,再进行刷新即可。通过 JedisClusterCommand#runWithRetries, 进行错误重试,slot数据刷新。
返回顶部
4. 通常的请求转发如何实现?
可以看到,redis实际上一直避开了转发这个问题。
那么,实际中,我们的转发工作都是如何实现的呢?
最简单的,接收到客户端的请求之后,将数据重新封装好,然后构建一个目标地址的新请求,发送过去,然后等待结果响应。当目标服务器响应后,再将结果响应给客户端即可。如:应用网关、代理服务器;
其次,是响应客户端一个状态码(如302),让客户端自主进行跳转。这和redis实现倒是如出一辙;
相对复杂的,直接使用流进行对接,接收到客户端的请求后,直接将数据传到目标服务器,同样,目标服务器响应后,直接将数据写入客户端通道即可。这种情况避免大量数据的重新封装,极大减少了转发带来的性能损失,从而提高响应速度。这种场景,一般用于传输大文件。