java线程池,工作窃取算法.md

简介: 在上一篇《java线程池,阿里为什么不允许使用Executors?》中我们谈及了线程池,同时又发现一个现象,当最大线程数还没有满的时候耗时的任务全部堆积给了单个线程那么有没有一种机制,在线程池中还有线程可以提供服务的时候帮忙分担一些已经被分配给某一个线程的耗时任务呢?

前言

在上一篇《java线程池,阿里为什么不允许使用Executors?》中我们谈及了线程池,同时又发现一个现象,当最大线程数还没有满的时候耗时的任务全部堆积给了单个线程, 代码如下:

ThreadPoolExecutor executor = new ThreadPoolExecutor(
        1, //corePoolSize
        100, //maximumPoolSize
        100, //keepAliveTime
        TimeUnit.SECONDS, //unit
        new LinkedBlockingDeque<>(100));//workQueue

for (int i = 0; i < 5; i++) {
    final int taskIndex = i;
    executor.execute(() -> {
        System.out.println(taskIndex);
        try {
            Thread.sleep(Long.MAX_VALUE);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    });
}
// 输出: 0

下图很形象的说明了这个问题:

那么有没有一种机制,在线程池中还有线程可以提供服务的时候帮忙分担一些已经被分配给某一个线程的耗时任务呢?
答案当然是有的:工作窃取算法

工作窃取 (Work stealing)

这边大家先不要将这个跟java挂钩,因为这个属于算法,一种思想和套路,并不是特定语言特有的东西,所以不同的语言对应的实现也不尽一样,但核心思想一致。
这边会用“工作者”来代替线程的说法,如果在java中这个工作者就是线程。

工作窃取核心思想是,自己的活干完了去看看别人有没有没干完的活,如果有就拿过来帮他干。
大多数实现机制是:为每个工作者程分配一个双端队列(本地队列)用于存放需要执行的任务,当自己的队列没有数据的时候从其它工作者队列中获得一个任务继续执行。

我们来看一张图,这张图是发生了工作窃取时的状态。

可以看到工作者B的本地队列中没有了需要执行的规则,它正尝试从工作者A的任务队列中偷取一个任务。

为什么说尝试?因为涉及到并行编程肯定涉及到并发安全的问题,有可能在偷取过程中工作者A提前抢占了这个任务,那么B的偷取就会失败。大多数实现会尽量避免发生这个问题,所以大多数情况下不会发生。

并发安全的问题是怎么避免的呢?

一般是自己的本地队列采取LIFO(后进先出),偷取时采用FIFO(先进先出),一个从头开始执行,一个从尾部开始执行,由于偷取的动作十分快速,会大量降低这种冲突,也是一种优化方式。

Java中的工作窃取算法线程池

在Java 1.7新增了一个ForkJoinPool类,主要是实现了工作窃取算法的线程池,该类在1.8中被优化了,同时1.8在Executors类中还新增了两个newWorkStealingPool工厂方法。

java7中的fork/join task 和 java8中的并行stream都是基于ForkJoinPool。

// 使用当前处理器数, 相当于调用 newWorkStealingPool(Runtime.getRuntime().availableProcessors());
public static ExecutorService newWorkStealingPool();
public static ExecutorService newWorkStealingPool(int parallelism);

同时 ForkJoinPool 还在全局建立了一个公共的线程池

ForkJoinPool.commonPool();

默认的并行度是当前JVM识别到的处理器数。这个值也是可以通过参数进行变更的,下面是可以通过JVM熟悉进行commonPool设置的参数。

前缀统一为: java.util.concurrent.ForkJoinPool.common.
比如 parallelism 就要写为 java.util.concurrent.ForkJoinPool.common.parallelism

参数 描述 默认值
parallelism 并行级别 JVM识别到的处理器数
threadFactory 线程工厂类名 ForkJoinPool.DefaultForkJoinWorkerThreadFactory
exceptionHandler 错误处理程序 null
maximumSpares 最大允许额外线程数 256

使用工作窃取算法的线程池来优化之前的代码

ExecutorService executor = Executors.newWorkStealingPool(8);

for (int i = 0; i < 5; i++) {
    final int taskIndex = i;
    executor.execute(() -> {
        System.out.println(taskIndex);
        try {
            Thread.sleep(Long.MAX_VALUE);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    });
}

// 无序输出 0~4

如果将Executors.newWorkStealingPool(8)改成ForkJoinPool.commonPool()会输出什么?

如果你能知道输出什么那么你对这个机制就算掌握了,会输出当前运行环境中处理器(cpu)数量的次数(如果核算大于5就只会输出5个结果)。

newWorkStealingPool 和 ForkJoinPool.commonPool 该优先选择哪个?

这个没有最优解,推荐执行的小任务(零散的)使用commonPool,而有特定目的的则使用newWorkStealingPoolnew ForkJoinPool

使用ForkJoinPool.commonPool 需要注意的问题

commonPool默认使用当前环境的处理器格式来当做并行程度,如果遇上堵塞形任务一样会遇到浪费算力的问题。
这点在容器化时需要特别注意,因为容器化的cpu个数限制往往不会太大。
这种时候可以通过设置默认的并行度或者使用newWorkStealingPool来手动指定并行度。

最后

为什么ForkJoinPool极少出现线程关键字?

现在许多语言淡化了线程这个概念,而golang中更是直接去掉了线程能力改为提供协程goroutine
目的还是线程是OS的资源,OS对程序内部运行其实并没有太了解,为了避免线程资源的浪费许多语言会自己管理线程。
对于程序来说我们关心的主要还是任务的并行运行,并不关心是线程还是协程。
下面是一些对应关系:

  • CPU : 线程 (1:N)
  • 线程 : 协程 (1:N)

CPU由OS管理,OS提供线程给程序使用,程序利用线程提供协程能力给应用使用。

ForkJoinPool一定更快吗?

不,大家都知道做的事情越多逻辑越复杂效率会越低。
ForkJoinPool中的工作队列,工作窃取都是需要额外管理的,同时也对线程调度和GC带来了压力。
所以ForkJoinPool并不是万能药大家根据具体需要去使用。

后面可能会跟大家分享下 Spring 中的 @Async

目录
相关文章
|
1月前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
95 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
3天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
15 6
|
24天前
|
存储 监控 小程序
Java中的线程池优化实践####
本文深入探讨了Java中线程池的工作原理,分析了常见的线程池类型及其适用场景,并通过实际案例展示了如何根据应用需求进行线程池的优化配置。文章首先介绍了线程池的基本概念和核心参数,随后详细阐述了几种常见的线程池实现(如FixedThreadPool、CachedThreadPool、ScheduledThreadPool等)的特点及使用场景。接着,通过一个电商系统订单处理的实际案例,分析了线程池参数设置不当导致的性能问题,并提出了相应的优化策略。最终,总结了线程池优化的最佳实践,旨在帮助开发者更好地利用Java线程池提升应用性能和稳定性。 ####
|
21天前
|
监控 Java 开发者
深入理解Java中的线程池实现原理及其性能优化####
本文旨在揭示Java中线程池的核心工作机制,通过剖析其背后的设计思想与实现细节,为读者提供一份详尽的线程池性能优化指南。不同于传统的技术教程,本文将采用一种互动式探索的方式,带领大家从理论到实践,逐步揭开线程池高效管理线程资源的奥秘。无论你是Java并发编程的初学者,还是寻求性能调优技巧的资深开发者,都能在本文中找到有价值的内容。 ####
|
1月前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
113 38
|
28天前
|
存储 缓存 监控
Java中的线程池深度解析####
本文深入探讨了Java并发编程中的核心组件——线程池,从其基本概念、工作原理、核心参数解析到应用场景与最佳实践,全方位剖析了线程池在提升应用性能、资源管理和任务调度方面的重要作用。通过实例演示和性能对比,揭示合理配置线程池对于构建高效Java应用的关键意义。 ####
|
1月前
|
Prometheus 监控 Cloud Native
JAVA线程池监控以及动态调整线程池
【10月更文挑战第22天】在 Java 中,线程池的监控和动态调整是非常重要的,它可以帮助我们更好地管理系统资源,提高应用的性能和稳定性。
108 4
|
1月前
|
Prometheus 监控 Cloud Native
在 Java 中,如何使用线程池监控以及动态调整线程池?
【10月更文挑战第22天】线程池的监控和动态调整是一项重要的任务,需要我们结合具体的应用场景和需求,选择合适的方法和策略,以确保线程池始终处于最优状态,提高系统的性能和稳定性。
296 2
|
2月前
|
缓存 监控 Java
java中线程池的使用
java中线程池的使用

热门文章

最新文章