Apache Common Math Stat

简介:

Apache Common Math Stat

http://commons.apache.org/proper/commons-math/userguide/stat.html

mark

 

DescriptiveStatistics maintains the input data in memory and has the capability of producing "rolling" statistics computed from a "window" consisting of the most recently added values.

SummaryStatistics does not store the input data values in memory, so the statistics included in this aggregate are limited to those that can be computed in one pass through the data without access to the full array of values.

 

如果不需要cache,one pass就可以算出来, 用SummaryStatistics

DescriptiveStatistics 会cache所有数据在memory,用于无法one pass算出来的,支持window和rolling

image

SummaryStatistics can be aggregated using AggregateSummaryStatistics. This class can be used to concurrently gather statistics for multiple datasets as well as for a combined sample including all of the data.

MultivariateSummaryStatistics is similar to SummaryStatistics but handles n-tuple values instead of scalar values. It can also compute the full covariance matrix for the input data.

Neither DescriptiveStatistics nor SummaryStatistics is thread-safe. SynchronizedDescriptiveStatistics andSynchronizedSummaryStatistics, respectively, provide thread-safe versions for applications that require concurrent access to statistical aggregates by multiple threads.SynchronizedMultivariateSummaryStatistics provides thread-safeMultivariateSummaryStatistics.

There is also a utility class, StatUtils, that provides static methods for computing statistics directly from double[] arrays.

一些变体,

StatUtils可以方便的使用,

相关文章
|
Java Apache Maven
【异常解决】Handler dispatch failed;nested exception is java.lang.NoClassDefFoundError: org/apache/common
【异常解决】Handler dispatch failed;nested exception is java.lang.NoClassDefFoundError: org/apache/common
10802 0
|
JavaScript 算法 前端开发
underscorejs js界的apache common
underscorejs js界的apache common
|
Java Apache
JAVA压缩、解压,使用Apache Common Compress包下载链接
JAVA压缩、解压,使用Apache Common Compress包下载链接
419 0
|
Apache 容器 人机交互
|
4月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
802 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
456 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
6月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
800 9
Apache Flink:从实时数据分析到实时AI
|
6月前
|
SQL 人工智能 API
Apache Flink 2.1.0: 面向实时 Data + AI 全面升级,开启智能流处理新纪元
Apache Flink 2.1.0 正式发布,标志着实时数据处理引擎向统一 Data + AI 平台迈进。新版本强化了实时 AI 能力,支持通过 Flink SQL 和 Table API 创建及调用 AI 模型,新增 Model DDL、ML_PREDICT 表值函数等功能,实现端到端的实时 AI 工作流。同时增强了 Flink SQL 的流处理能力,引入 Process Table Functions(PTFs)、Variant 数据类型,优化流式 Join 及状态管理,显著提升作业稳定性与资源利用率。
716 0
|
5月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1919 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
902 33
The Past, Present and Future of Apache Flink

推荐镜像

更多