天猫双11数据过于完美,引网友质疑,用Python算算就知道了啊

简介: 天猫双11数据过于完美,引网友质疑,用Python算算就知道了啊

双11结束了,大家已经无手可剁 ,你们都贡献了多少啊?

天猫官方公布了今年的双11成交额为2684亿元,成功刷新了自己创下的商业纪录。按理说大家已经习惯了逐年增长,没想到。。。

由于过于完美,引发网友提出质疑。

screenshot

该微博在天猫公布2019年销售额后,引发大量讨论,成功登上热搜。

一些人提出了相反意见:某大V表示天猫双11数据是精确地控制了交易额,从而形成了理想的曲线。

而天猫相关负责人回应称,符合趋势就假?造谣要负法律责任。

我们且不评论是真是假,先想想我们能干点什么呢?

不如先照着这位微博网友的步骤来复现一遍吧。

利用Excel进行拟合

这位微博网友使用的工具似乎是Excel,我安装的是WPS,应该也能胜任。

先将天猫2009年-2018年的双十一历年销售额历史数据导入到一张表里。

screenshot

点击插入一张散点图。

screenshot

screenshot

左键点击一下任意一个散点数据,出现散点数据选择状态。

鼠标右击,弹出提示框,点击“添加趋势线”。

在WPS表格右侧,找到趋势线属性按钮,左键单击一下,弹出趋势线属性框。

screenshot

选择三次多项式,得到结果√
screenshot

其中R²=0.9994,这与微博网友的预测值一致,说明我们的方法是对的。

天猫双11数据过于完美,引网友质疑,用Python算算就知道了啊
over。

停一停,

作为Python专业爱好者,怎么能能少了Python呢?

利用Python进行拟合并预测

我们在Python中可以利用numpy求解多项式以及多项式拟合。

尝试用numpy的polyfit函数进行拟合,并作图。

代码如下:

import matplotlib.pyplot as plt
import numpy as np

x = np.array([year for year in range(2009,2019)])
y = np.array([0.5,9.36,52,191,352,571,912,1207,1682.69,2135])
z1 = np.polyfit(x, y, 3) # 用3次多项式拟合
p1 = np.poly1d(z1)

yvals=p1(x)
plot1=plt.plot(x, y, '*',label='实际销售额')
plot2=plt.plot(x, yvals, 'r',label='拟合销售额')
plt.xlabel('年份')
plt.ylabel('销售额(亿)')
plt.legend(loc=4) # 指定legend的位置
plt.title('2009-2018淘宝双十一销售额拟合曲线')
plt.figure(figsize=(10, 10))
plt.show()

print('拟合多项式:',p1) #打印拟合多项式
p1 = np.poly1d(z1)
print("-"*40)
print('2019年预测值:',p1(2019)) #打印预测值
运行结果:

screenshot

screenshot

利用三次多项式预测的数据与公布的结果确实很相近。

我们继续搞事情。

将今年2019年的2684亿导入,预测一下后面三年:

screenshot

按照网上的阴谋论,后面几年的数据应该如此。

碎碎谈:

看了网络上的好几篇文章,众说纷纭。

作为一个技术er,就不去对此事做评价了。

只写一些其中跟我们相关的数据知识就够了。

网络大众对此事的看法到底如何?

不妨看下腾讯科技发起的一个投票。

screenshot

大众的看法就像这个投票。

相关文章
|
2月前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
1月前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
27 1
|
1月前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
1月前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
2月前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
63 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
2月前
|
计算机视觉 Python
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
这篇文章介绍了如何使用Python的OpenCV库将多张图片合并为一张图片显示,以及如何使用matplotlib库从不同txt文档中读取数据并绘制多条折线图。
45 3
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
|
2月前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
62 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
2月前
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
52 2
|
1月前
|
索引 Python
SciPy 空间数据1
SciPy 通过 `scipy.spatial` 模块处理空间数据,如判断点是否在边界内、计算最近点等。三角测量是通过测量角度来确定目标距离的方法。多边形的三角测量可将其分解为多个三角形,用于计算面积。Delaunay 三角剖分是一种常用方法,可以对一系列点进行三角剖分。示例代码展示了如何使用 `Delaunay()` 函数创建三角形并绘制。
31 0
|
2月前
|
JSON 安全 数据安全/隐私保护
深度剖析:Python如何运用OAuth与JWT,为数据加上双保险🔐
【10月更文挑战第10天】本文介绍了OAuth 2.0和JSON Web Tokens (JWT) 两种现代Web应用中最流行的认证机制。通过使用Flask-OAuthlib和PyJWT库,详细展示了如何在Python环境中实现这两种认证方式,从而提升系统的安全性和开发效率。OAuth 2.0适用于授权过程,JWT则简化了认证流程,确保每次请求的安全性。结合两者,可以构建出既安全又高效的认证体系。
49 1