Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note: The solution set must not contain duplicate triplets.
For example, given array S = [-1, 0, 1, 2, -1, -4],
A solution set is:
[
[-1, 0, 1],
[-1, -1, 2]
]
给一组数组,要求得出所有和为0的数字组合,要求数字组合不能重复出现,并且按照升序排列。
先对数组进行排序,时间复杂度O(log(n)),然后定好一个数的位置,查找另外两个数的和等于-nums[i]的组合,由于数组排好序了,所以可以从两边往中间走,当结果大于0的时候后边往后退一步,否则前边进一步,时间复杂度O(n^2),所以时间复杂度为O(n^2)。
public List<List<Integer>> threeSum(int[] nums) {
List<List<Integer>> res = new ArrayList<List<Integer>>();
int len = nums.length;
if (len < 3)
return res;
Arrays.sort(nums);
for (int i = 0; i < len; i++) {
if (nums[i] > 0)
break;
if (i > 0 && nums[i] == nums[i - 1])
continue;
int begin = i + 1, end = len - 1;
while (begin < end) {
int sum = nums[i] + nums[begin] + nums[end];
if (sum == 0) {
List<Integer> list = new ArrayList<Integer>();
list.add(nums[i]);
list.add(nums[begin]);
list.add(nums[end]);
res.add(list);
begin++;
end--;
while (begin < end && nums[begin] == nums[begin - 1])
begin++;
while (begin < end && nums[end] == nums[end + 1])
end--;
} else if (sum > 0)
end--;
else
begin++;
}
}
return res;
}