ArrayBlockingQueue 和LinkedBlockingQueue 代码解析(JDK8)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: 介绍了LinkedBlockingQueue和ArrayBlockingQueue源码实现原理相同点和不通电

在使用线程池的时候,需要指定BlockingQueue 常用的一般有ArrayBlockingQueue和LinkedBlockingQueue
有一天被问到有什么区别没回答上来,因此从代码的层面解析一下
1 ArrayBlockingQueue
顾名思义,就是用Array来实现的queue Blockqing 则说明是线程安全的

public class ArrayBlockingQueue<E> extends AbstractQueue<E> implements BlockingQueue<E>, Serializable {
    private static final long serialVersionUID = -817911632652898426L;
    final Object[] items;
    int takeIndex;
    int putIndex;
    int count;
    final ReentrantLock lock;
    private final Condition notEmpty;
    private final Condition notFull;
}

items 存储数据的数组
takeIndex 取数据时数组的下标
putIndex 放数据时的下标
count 数据的数量
lock 使用ReentrantLock 来保证线程安全
notEmpty 非空信号量,用来进行取数据时的信号量
notFull 非满信号量,在写数据时数据满时的等待信号量
1 构造函数

    public ArrayBlockingQueue(int capacity) {
        this(capacity, false);
    }
    public ArrayBlockingQueue(int capacity, boolean fair) {
        if (capacity <= 0)
            throw new IllegalArgumentException();
        this.items = new Object[capacity];//指定数组大小
        lock = new ReentrantLock(fair); //根据参数确定lock是否为公平锁,默认为false
        notEmpty = lock.newCondition(); //新建两个lock的信号量
        notFull =  lock.newCondition();
    }

2 写数据
研究代码发现 put add offer三个方法都调用了enqueue方法,ArrayBlockingQueue 将对数组的实际操作在jdk8抽象了出来,相对于jdk7进行了一定优化

    /**
     * Inserts element at current put position, advances, and signals.
     * Call only when holding lock.
     */
    //该方法只有在对象获取到锁之后才能调用
    private void enqueue(E x) {
        // assert lock.getHoldCount() == 1;
        // assert items[putIndex] == null;
        final Object[] items = this.items; //获取数组对象
        items[putIndex] = x; //putIndex 默认值为0
        if (++putIndex == items.length) //在putIndex到达数组尾部时,重新指向数组第一个位置
            putIndex = 0;
        count++; //数组元素+1
        notEmpty.signal(); //非空信号发送
    }

(1) offer
offer方法 尝试插入数据,在数组满时返回false,正常插入 返回true

    public boolean offer(E e) {
        checkNotNull(e); //校验数据是否为null
        final ReentrantLock lock = this.lock; //获取对象锁
        lock.lock(); //对当前对象加锁
        try {
            if (count == items.length) //如果数组满,返回false
                return false;
            else {
                enqueue(e); //数组没满,插入数据,返回true
                return true;
            }
        } finally {
            lock.unlock(); //释放锁
        }
    }

(2) add
ArrayBlockingQueue 调用了父类AbstractQueue的add方法,
在插入成功时返回true,在插入失败(数组满)时,抛出异常
AbstractQueue 的add方法调用了offer()方法,所以add是offer的功能升级版

    public boolean add(E e) {
        if (offer(e))
            return true;
        else
            throw new IllegalStateException("Queue full");
    }

(3) put
put方法 在进行数据插入时,会尝试获取锁并相应异常,同时,在数组满时,会一致等待,直到数组有了空闲空间

    public void put(E e) throws InterruptedException {
        checkNotNull(e);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();//尝试获取锁并相应异常
        try {
            while (count == items.length) //数组满,
                notFull.await(); //等待非满信号
            enqueue(e);
        } finally {
            lock.unlock(); //在数据正常插入或者其他线程抛出异常后,解锁
        }
    }

(4) offer(E e, long timeout, TimeUnit unit)
ArrayBlockingQueue 还提供了一种超时配置的方法,在数组数据满超过timeout后返回fasle

  public boolean offer(E e, long timeout, TimeUnit unit)
        throws InterruptedException {

        checkNotNull(e);
        long nanos = unit.toNanos(timeout);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (count == items.length) {
                if (nanos <= 0)
                    return false;
                nanos = notFull.awaitNanos(nanos); //condition超时后 返回-1
            }
            enqueue(e);
            return true;
        } finally {
            lock.unlock();
        }
    }

3 取数据
和写数据一样,取数据jdk8也进行了一定优化 统一调用dequeue方法

   private E dequeue() {
        // assert lock.getHoldCount() == 1;
        // assert items[takeIndex] != null;
        final Object[] items = this.items; 
        @SuppressWarnings("unchecked")
        E x = (E) items[takeIndex]; //获取最老数据
        items[takeIndex] = null; //最老数据位置置空
        if (++takeIndex == items.length) //下标到达最后 置零
            takeIndex = 0;
        count--; 
        if (itrs != null) //itrl目前没看到初始化的位置 ,暂时不清楚有什么用
            itrs.elementDequeued();
        notFull.signal();
        return x;
    }

(1) poll(E e, long timeout, TimeUnit unit)
很简单 列表为空返回null否则放回对应数据

    public E poll() {
        final ReentrantLock lock = this.lock;
        lock.lock(); //加锁
        try {
            return (count == 0) ? null : dequeue(); //列表为空返回null否则放回对应数据
        } finally {
            lock.unlock(); //解锁
        }
    }

(2) take(E e, long timeout, TimeUnit unit)
尝试加锁,在数组为空时一直等待,直到有新数据或者被外部中断

    public E take() throws InterruptedException {
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (count == 0)
                notEmpty.await();
            return dequeue();
        } finally {
            lock.unlock();
        }
    }

(3) peek(E e, long timeout, TimeUnit unit)
返回最老数据,但是不弹出数据,仅获取数据。在数组为空时返回null
因此一条数据可以重复peek多次

    public E peek() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return itemAt(takeIndex); // null when queue is empty
        } finally {
            lock.unlock();
        }
    }
    final E itemAt(int i) {
        return (E) items[i];
    }

(4) poll(long timeout, TimeUnit unit)(E e, long timeout, TimeUnit unit)
也提供了等待超过timeout 返回null的poll方法

    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
        long nanos = unit.toNanos(timeout);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (count == 0) {
                if (nanos <= 0)
                    return null;
                nanos = notEmpty.awaitNanos(nanos); //如果超时awaitNanos 返回-1 ,最后返回null
            }
            return dequeue();
        } finally {
            lock.unlock();
        }
    }

2 LinkedBlockingQueue
顾名思义,就是使用链表来存储的线程安全的队列

public class LinkedBlockingQueue<E> extends AbstractQueue<E> implements BlockingQueue<E>, Serializable {
    private static final long serialVersionUID = -6903933977591709194L;
    private final int capacity;
    private final AtomicInteger count;
    transient LinkedBlockingQueue.Node<E> head;
    private transient LinkedBlockingQueue.Node<E> last;
    private final ReentrantLock takeLock;
    private final Condition notEmpty;
    private final ReentrantLock putLock;
    private final Condition notFull;
}

capacity 链表的最大长度,默认为Integer.MAX_VALUE
count 元素数量
head 头节点
last 尾节点
takeLock 取数据锁
notEmpty 非空信号量
putLock 写数据锁
notFull 非满信号量
LinkedBlockingQueue 采用了读写锁分离,因此在短时间内产生大量读写操作时,
比arrayBlockingQueue性能更加优秀
1 构造函数

    public LinkedBlockingQueue() {
        this(Integer.MAX_VALUE);
    }
    public LinkedBlockingQueue(int capacity) {
        if (capacity <= 0) throw new IllegalArgumentException();
        this.capacity = capacity; //设置最大长度
        last = head = new Node<E>(null); //
    }

2写数据
LinkedBlockingQueue同样提供了三个函数 put offer add
同样提供了enqueue方法,该方法仅在获取到putLock 后执行

    private void enqueue(Node<E> node) {
        // assert putLock.isHeldByCurrentThread();
        // assert last.next == null;
        last = last.next = node; //在尾节点添加数据
    }

(1) offer(E e)

    public boolean offer(E e) {
        if (e == null) throw new NullPointerException();
        final AtomicInteger count = this.count; //获取元素数量
        if (count.get() == capacity) //如果链表长度到达上限,返回null
            return false;
        int c = -1;
        Node<E> node = new Node<E>(e); //创建新节点
        final ReentrantLock putLock = this.putLock; 
        putLock.lock();  //写锁加锁
        try {
            if (count.get() < capacity) { //如果没有到达链表上限
                enqueue(node);   //新增节点
                c = count.getAndIncrement(); //获取元素数量并将count+1(c=count,count++),
                                             //读写锁分离,链表数量可能有减少
                if (c + 1 < capacity)  //如果链表数量没有达到上限,非满信号量通知
                    notFull.signal();
            }
        } finally {
            putLock.unlock(); //解锁
        }
        if (c == 0)  //如果链表原来的数量为0
            signalNotEmpty(); //非空信号量通知
        return c >= 0;  //返回插入结果 成功返回true,失败返回fasle
    }
    private void signalNotEmpty() {
        final ReentrantLock takeLock = this.takeLock; //获取读锁
        takeLock.lock(); //读锁加锁,防止数据被读取
        try {
            notEmpty.signal(); //非空信号量通知
        } finally {
            takeLock.unlock(); //读锁解锁
        }
    }

(2) add(E e)
和ArrayBlockingQueue一样,直接调用offer方法,在新增成功后返回true,在新增失败后直接抛出异常
(3) put(E e)
put操作 和offer操作基本一致,只不过在链表满时进行等待,知道链表节点减少

 public void put(E e) throws InterruptedException {
        if (e == null) throw new NullPointerException();
        int c = -1;
        Node<E> node = new Node<E>(e);
        final ReentrantLock putLock = this.putLock; //获取写锁
        final AtomicInteger count = this.count;
        putLock.lockInterruptibly(); //对写锁加锁并相应异常
        try {
       
            while (count.get() == capacity) { //如果节点数量到达上限
                notFull.await(); //等待非满信号量的通知
            }
            enqueue(node); //在数据被弹出后,插入新节点
            c = count.getAndIncrement();  
            if (c + 1 < capacity)
                notFull.signal();
        } finally {
            putLock.unlock(); //释放写锁
        }
        if (c == 0) 
            signalNotEmpty();
    }

(4) offer(E e, long timeout, TimeUnit unit)
和ArrayBlockingQueue一样,如果链表ch长度到达上限,就等待timeout ,超时后直接返回fasle
3 读取数据
上dequeue

    private E dequeue() {
        // assert takeLock.isHeldByCurrentThread();
        // assert head.item == null;
        Node<E> h = head; // 获取头节点
        Node<E> first = h.next; //first设置为新的头节点
        h.next = h; // help GC //需要移除的节点next指向自己帮助gc
        head = first;  //head 置为新的头节点
        E x = first.item; //获取返回值得item
        first.item = null; //first item设置为null 
        return x; //返回item
    }

(1) poll(E e, long timeout, TimeUnit unit)

    public E poll() {
        final AtomicInteger count = this.count; //获取数量
        if (count.get() == 0) //如果链表节点数量为空 返回null
            return null;
        E x = null;
        int c = -1;
        final ReentrantLock takeLock = this.takeLock; //获取读锁并加锁
        takeLock.lock();
        try {
            if (count.get() > 0) {
                x = dequeue(); //获取数据
                c = count.getAndDecrement(); //数量-1
                if (c > 1)  //剩余节点>1
                    notEmpty.signal(); //非空信号通知
            }
        } finally {
            takeLock.unlock(); //读锁解锁
        }
        if (c == capacity) //可能有线程在等在非满信号,-1前数量=限定长度
            signalNotFull();
        return x;
    }
    private void signalNotFull() {
        final ReentrantLock putLock = this.putLock; //获取写锁并加锁
        putLock.lock();
        try {
            notFull.signal(); //非满信号通知
        } finally {
            putLock.unlock(); //写锁解锁
        } 
    }

(2) peek(E e)
存在返回数据,不存在返回null,链表节点不便,仅获取数据

    public E peek() {
        if (count.get() == 0)
            return null;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lock();
        try {
            Node<E> first = head.next;
            if (first == null)
                return null;
            else
                return first.item;
        } finally {
            takeLock.unlock();
        }
    }

(3) take(E e)
链表到达最大长度。等待,可以被异常中断

    public E take() throws InterruptedException {
        E x;
        int c = -1;
        final AtomicInteger count = this.count;
        final ReentrantLock takeLock = this.takeLock;
        takeLock.lockInterruptibly();
        try {
            while (count.get() == 0) {
                notEmpty.await();
            }
            x = dequeue();
            c = count.getAndDecrement();
            if (c > 1)
                notEmpty.signal();
        } finally {
            takeLock.unlock();
        }
        if (c == capacity)
            signalNotFull();
        return x;
    }

(4) poll(long timeout, TimeUnit unit)
等待超过timeout 返回null

3 两者的区别
1 Linked读写锁分离,在短时间内发生大量读写交替操作时性能高
2 Array在读写操作时不需要维护额外节点,空间较少
3 Array使用int count Linked使用AtomicInteger ,
因此:Array使用唯一Lock来保证count强一致性,Linked使用Atomic来保证count的准确性

相关文章
|
2天前
|
敏捷开发 安全 测试技术
软件测试的艺术:从代码到用户体验的全方位解析
本文将深入探讨软件测试的重要性和实施策略,通过分析不同类型的测试方法和工具,展示如何有效地提升软件质量和用户满意度。我们将从单元测试、集成测试到性能测试等多个角度出发,详细解释每种测试方法的实施步骤和最佳实践。此外,文章还将讨论如何通过持续集成和自动化测试来优化测试流程,以及如何建立有效的测试团队来应对快速变化的市场需求。通过实际案例的分析,本文旨在为读者提供一套系统而实用的软件测试策略,帮助读者在软件开发过程中做出更明智的决策。
|
13天前
|
存储 Java 开发者
【Java新纪元启航】JDK 22:解锁未命名变量与模式,让代码更简洁,思维更自由!
【9月更文挑战第7天】JDK 22带来的未命名变量与模式匹配的结合,是Java编程语言发展历程中的一个重要里程碑。它不仅简化了代码,提高了开发效率,更重要的是,它激发了我们对Java编程的新思考,让我们有机会以更加自由、更加创造性的方式解决问题。随着Java生态系统的不断演进,我们有理由相信,未来的Java将更加灵活、更加强大,为开发者们提供更加广阔的舞台。让我们携手并进,共同迎接Java新纪元的到来!
39 11
|
12天前
|
监控 Java 开发者
【并发编程的终极简化】JDK 22结构化并发:让并发编程变得像写代码一样简单!
【9月更文挑战第8天】随着JDK 22的发布,结构化并发为Java编程带来了全新的并发编程体验。它不仅简化了并发编程的复杂性,提高了程序的可靠性和可观察性,还为开发者们提供了更加高效、简单的并发编程方式。我们相信,在未来的发展中,结构化并发将成为Java并发编程的主流方式之一,推动Java编程语言的进一步发展。让我们共同期待Java在并发编程领域的更多创新和突破!
|
12天前
|
IDE Java 数据处理
【字符串构建的全新时代】JDK 22字符串模板:让字符串操作如行云流水,代码更流畅!
【9月更文挑战第8天】虽然目前JDK 22的确切内容尚未公布,但我们可以根据Java语言的演进趋势和社区的需求,构想出一种可能在未来版本中引入的字符串模板机制。这种机制有望为Java的字符串操作带来革命性的变化,让代码编写如行云流水般流畅。我们期待Java语言能够不断进化,为开发者们提供更加高效、便捷和强大的编程工具。
|
19天前
|
开发者 图形学 Java
揭秘Unity物理引擎核心技术:从刚体动力学到关节连接,全方位教你如何在虚拟世界中重现真实物理现象——含实战代码示例与详细解析
【8月更文挑战第31天】Unity物理引擎对于游戏开发至关重要,它能够模拟真实的物理效果,如刚体运动、碰撞检测及关节连接等。通过Rigidbody和Collider组件,开发者可以轻松实现物体间的互动与碰撞。本文通过具体代码示例介绍了如何使用Unity物理引擎实现物体运动、施加力、使用关节连接以及模拟弹簧效果等功能,帮助开发者提升游戏的真实感与沉浸感。
33 1
|
19天前
|
存储 SQL 安全
【数据库高手的秘密武器:深度解析SQL视图与存储过程的魅力——封装复杂逻辑,实现代码高复用性的终极指南】
【8月更文挑战第31天】本文通过具体代码示例介绍 SQL 视图与存储过程的创建及应用优势。视图作为虚拟表,可简化复杂查询并提升代码可维护性;存储过程则预编译 SQL 语句,支持复杂逻辑与事务处理,增强代码复用性和安全性。通过创建视图 `high_earners` 和存储过程 `get_employee_details` 及 `update_salary` 的实例,展示了二者在实际项目中的强大功能。
19 1
|
21天前
|
Java 开发者 UED
“Java开发者必看:异步编程实战解析,掌握这些技巧,让你的代码跑得更快!
【8月更文挑战第30天】随着互联网技术的发展,系统性能和用户体验成为关注焦点。异步编程作为提高应用响应速度和吞吐量的技术,在Java中广泛采用。本文详细介绍了Java异步编程的概念与优势,并通过实战示例展示了如何利用Future、Callable及CompletableFuture在实际项目中实施异步编程,帮助开发者更好地理解和应用这一技术。
36 2
|
19天前
|
开发者 图形学 API
从零起步,深度揭秘:运用Unity引擎及网络编程技术,一步步搭建属于你的实时多人在线对战游戏平台——详尽指南与实战代码解析,带你轻松掌握网络化游戏开发的核心要领与最佳实践路径
【8月更文挑战第31天】构建实时多人对战平台是技术与创意的结合。本文使用成熟的Unity游戏开发引擎,从零开始指导读者搭建简单的实时对战平台。内容涵盖网络架构设计、Unity网络API应用及客户端与服务器通信。首先,创建新项目并选择适合多人游戏的模板,使用推荐的网络传输层。接着,定义基本玩法,如2D多人射击游戏,创建角色预制件并添加Rigidbody2D组件。然后,引入网络身份组件以同步对象状态。通过示例代码展示玩家控制逻辑,包括移动和发射子弹功能。最后,设置服务器端逻辑,处理客户端连接和断开。本文帮助读者掌握构建Unity多人对战平台的核心知识,为进一步开发打下基础。
41 0
|
19天前
|
开发者 图形学 C#
揭秘游戏沉浸感的秘密武器:深度解析Unity中的音频设计技巧,从背景音乐到动态音效,全面提升你的游戏氛围艺术——附实战代码示例与应用场景指导
【8月更文挑战第31天】音频设计在游戏开发中至关重要,不仅能增强沉浸感,还能传递信息,构建氛围。Unity作为跨平台游戏引擎,提供了丰富的音频处理功能,助力开发者轻松实现复杂音效。本文将探讨如何利用Unity的音频设计提升游戏氛围,并通过具体示例代码展示实现过程。例如,在恐怖游戏中,阴森的背景音乐和突然的脚步声能增加紧张感;在休闲游戏中,轻快的旋律则让玩家感到愉悦。
33 0
|
19天前
|
开发者 图形学 C#
深度解密:Unity游戏开发中的动画艺术——Mecanim状态机如何让游戏角色栩栩如生:从基础设置到高级状态切换的全面指南,助你打造流畅自然的游戏动画体验
【8月更文挑战第31天】Unity动画系统是游戏开发的关键部分,尤其适用于复杂角色动画。本文通过具体案例讲解Mecanim动画状态机的使用方法及原理。我们创建一个游戏角色并设计行走、奔跑和攻击动画,详细介绍动画状态机设置及脚本控制。首先导入动画资源并添加Animator组件,然后创建Animator Controller并设置状态间的转换条件。通过编写C#脚本(如PlayerMovement)控制动画状态切换,实现基于玩家输入的动画过渡。此方法不仅适用于游戏角色,还可用于任何需动态动画响应的对象,增强游戏的真实感与互动性。
45 0

推荐镜像

更多