Java集合 HashSet的原理及常用方法

简介: Java集合 HashSet的原理及常用方法目录一. HashSet概述二. HashSet构造三. add方法四. remove方法五. 遍历六. 合计合计先看一下LinkedHashSet在看一下TreeSet七.

Java集合 HashSet的原理及常用方法
目录

一. HashSet概述
二. HashSet构造
三. add方法
四. remove方法
五. 遍历
六. 合计合计
先看一下LinkedHashSet
在看一下TreeSet
七. 总结
一. HashSet概述
HashSet是Java集合Set的一个实现类,Set是一个接口,其实现类除HashSet之外,还有TreeSet,并继承了Collection,HashSet集合很常用,同时也是程序员面试时经常会被问到的知识点,下面是结构图

public class HashSet

extends AbstractSet<E>
implements Set<E>, Cloneable, java.io.Serializable

{}
二. HashSet构造
HashSet有几个重载的构造方法,我们来看一下

private transient HashMap map;
//默认构造器
public HashSet() {

map = new HashMap<>();

}
//将传入的集合添加到HashSet的构造器
public HashSet(Collection<? extends E> c) {

map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16));
addAll(c);

}
//明确初始容量和装载因子的构造器
public HashSet(int initialCapacity, float loadFactor) {

map = new HashMap<>(initialCapacity, loadFactor);

}
//仅明确初始容量的构造器(装载因子默认0.75)
public HashSet(int initialCapacity) {

map = new HashMap<>(initialCapacity);

}
通过上面的源码,我们发现了HashSet就TM是一个皮包公司,它就对外接活儿,活儿接到了就直接扔给HashMap处理了。因为底层是通过HashMap实现的,这里简单提一下:

HashMap的数据存储是通过数组+链表/红黑树实现的,存储大概流程是通过hash函数计算在数组中存储的位置,如果该位置已经有值了,判断key是否相同,相同则覆盖,不相同则放到元素对应的链表中,如果链表长度大于8,就转化为红黑树,如果容量不够,则需扩容(注:这只是大致流程)。

如果对HashMap原理不太清楚的话,可以先去了解一下

HashMap原理(一) 概念和底层架构

HashMap原理(二) 扩容机制及存取原理

三. add方法
HashSet的add方法时通过HashMap的put方法实现的,不过HashMap是key-value键值对,而HashSet是集合,那么是怎么存储的呢,我们看一下源码

private static final Object PRESENT = new Object();

public boolean add(E e) {

return map.put(e, PRESENT)==null;

}
看源码我们知道,HashSet添加的元素是存放在HashMap的key位置上,而value取了默认常量PRESENT,是一个空对象,至于map的put方法,大家可以看HashMap原理(二) 扩容机制及存取原理。

四. remove方法
HashSet的remove方法通过HashMap的remove方法来实现

//HashSet的remove方法
public boolean remove(Object o) {

return map.remove(o)==PRESENT;

}
//map的remove方法
public V remove(Object key) {

Node<K,V> e;
//通过hash(key)找到元素在数组中的位置,再调用removeNode方法删除
return (e = removeNode(hash(key), key, null, false, true)) == null ? null : e.value;

}
/**

  • */

final Node removeNode(int hash, Object key, Object value,

                       boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
//步骤1.需要先找到key所对应Node的准确位置,首先通过(n - 1) & hash找到数组对应位置上的第一个node
if ((tab = table) != null && (n = tab.length) > 0 &&
    (p = tab[index = (n - 1) & hash]) != null) {
    Node<K,V> node = null, e; K k; V v;
    //1.1 如果这个node刚好key值相同,运气好,找到了
    if (p.hash == hash &&
        ((k = p.key) == key || (key != null && key.equals(k))))
        node = p;
    /**
     * 1.2 运气不好,在数组中找到的Node虽然hash相同了,但key值不同,很明显不对, 我们需要遍历继续
     *     往下找;
     */
    else if ((e = p.next) != null) {
        //1.2.1 如果是TreeNode类型,说明HashMap当前是通过数组+红黑树来实现存储的,遍历红黑树找到对应node
        if (p instanceof TreeNode)
            node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
        else {
            //1.2.2 如果是链表,遍历链表找到对应node
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key ||
                     (key != null && key.equals(k)))) {
                    node = e;
                    break;
                }
                p = e;
            } while ((e = e.next) != null);
        }
    }
    //通过前面的步骤1找到了对应的Node,现在我们就需要删除它了
    if (node != null && (!matchValue || (v = node.value) == value ||
                         (value != null && value.equals(v)))) {
        /**
         * 如果是TreeNode类型,删除方法是通过红黑树节点删除实现的,具体可以参考【TreeMap原理实现
         * 及常用方法】
         */
        if (node instanceof TreeNode)
            ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
        /** 
         * 如果是链表的情况,当找到的节点就是数组hash位置的第一个元素,那么该元素删除后,直接将数组
         * 第一个位置的引用指向链表的下一个即可
         */
        else if (node == p)
            tab[index] = node.next;
        /**
         * 如果找到的本来就是链表上的节点,也简单,将待删除节点的上一个节点的next指向待删除节点的
         * next,隔离开待删除节点即可
         */
        else
            p.next = node.next;
        ++modCount;
        --size;
        //删除后可能存在存储结构的调整,可参考【LinkedHashMap如何保证顺序性】中remove方法
        afterNodeRemoval(node);
        return node;
    }
}
return null;

}
removeTreeNode方法具体实现可参考 TreeMap原理实现及常用方法

afterNodeRemoval方法具体实现可参考LinkedHashMap如何保证顺序性

五. 遍历
HashSet作为集合,有多种遍历方法,如普通for循环,增强for循环,迭代器,我们通过迭代器遍历来看一下

public static void main(String[] args) {

HashSet<String> setString = new HashSet<> ();
setString.add("星期一");
setString.add("星期二");
setString.add("星期三");
setString.add("星期四");
setString.add("星期五");

Iterator it = setString.iterator();
while (it.hasNext()) {
    System.out.println(it.next());
}

}
打印出来的结果如何呢?

星期二
星期三
星期四
星期五
星期一
意料之中吧,HashSet是通过HashMap来实现的,HashMap通过hash(key)来确定存储的位置,是不具备存储顺序性的,因此HashSet遍历出的元素也并非按照插入的顺序。

六. 合计合计
按照我前面的规划,应该每一块主要的内容都单独写一下,如集合ArrayList,LinkedList,HashMap,TreeMap等。不过我在写这篇关于HashSet的文章时,发现有前面对HashMap的讲解后,确实简单,HashSet就是一个皮包公司,在HashMap外面加了一个壳,那么LinkedHashSet是否就是在LinkedHashMap外面加了一个壳呢,而TreeSet是否是在TreeMap外面加了一个壳?我们来验证一下

先看一下LinkedHashSet
最开始的结构图已经提到了LinkedHashSet是HashSet的子类,我们来看源码

public class LinkedHashSet

extends HashSet<E>
implements Set<E>, Cloneable, java.io.Serializable 

{


public LinkedHashSet(int initialCapacity, float loadFactor) {
    super(initialCapacity, loadFactor, true);
}

public LinkedHashSet(int initialCapacity) {
    super(initialCapacity, .75f, true);
}

public LinkedHashSet() {
    super(16, .75f, true);
}

public LinkedHashSet(Collection<? extends E> c) {
    super(Math.max(2*c.size(), 11), .75f, true);
    addAll(c);
}

public Spliterator<E> spliterator() {
    return Spliterators.spliterator(this, Spliterator.DISTINCT | Spliterator.ORDERED);
}

}
上面就是LinkedHashSet的所有代码了,是不是感觉智商被否定了,这基本上没啥东西嘛,构造器还全部调用父类的,下面就是其父类HashSet的对此的构造方法

HashSet(int initialCapacity, float loadFactor, boolean dummy) {

map = new LinkedHashMap<>(initialCapacity, loadFactor);

}
大家也看出来,和我们的猜测一样,没有深究下去的必要了。如果有兴趣可以看看LinkedHashMap如何保证顺序性

在看一下TreeSet
public class TreeSet extends AbstractSet

implements NavigableSet<E>, Cloneable, java.io.Serializable

{

public TreeSet() {
    this(new TreeMap<E,Object>());
}
public TreeSet(Comparator<? super E> comparator) {
    this(new TreeMap<>(comparator));
}
public TreeSet(Collection<? extends E> c) {
    this();
    addAll(c);
}
public TreeSet(SortedSet<E> s) {
    this(s.comparator());
    addAll(s);
}

}
确实如我们所猜测,TreeSet也完全依赖于TreeMap来实现,如果有兴趣可以看看TreeMap原理实现及常用方法

七. 总结
本来想三章的内容,一章就算完了,虽然Set实现有点赖皮,毕竟他祖辈是Collection而不是Map,在Map的实现类上穿了一层衣服就成了Set,然后出于某种目的埋伏在Collection中,哈哈,开个玩笑,本文主要介绍了HashSet的原理以及主要方法,同时简单介绍了LinkedHashSet和TreeSet,若有不对之处,请批评指正,望共同进步,谢谢!
原文地址https://www.cnblogs.com/LiaHon/p/11257805.html

相关文章
|
4天前
|
存储 安全 Java
Java 集合框架中的老炮与新秀:HashTable 和 HashMap 谁更胜一筹?
嗨,大家好,我是技术伙伴小米。今天通过讲故事的方式,详细介绍 Java 中 HashMap 和 HashTable 的区别。从版本、线程安全、null 值支持、性能及迭代器行为等方面对比,帮助你轻松应对面试中的经典问题。HashMap 更高效灵活,适合单线程或需手动处理线程安全的场景;HashTable 较古老,线程安全但性能不佳。现代项目推荐使用 ConcurrentHashMap。关注我的公众号“软件求生”,获取更多技术干货!
23 3
|
2月前
|
消息中间件 Java Kafka
在Java中实现分布式事务的常用框架和方法
总之,选择合适的分布式事务框架和方法需要综合考虑业务需求、性能、复杂度等因素。不同的框架和方法都有其特点和适用场景,需要根据具体情况进行评估和选择。同时,随着技术的不断发展,分布式事务的解决方案也在不断更新和完善,以更好地满足业务的需求。你还可以进一步深入研究和了解这些框架和方法,以便在实际应用中更好地实现分布式事务管理。
|
11天前
|
监控 Java API
探索Java NIO:究竟在哪些领域能大显身手?揭秘原理、应用场景与官方示例代码
Java NIO(New IO)自Java SE 1.4引入,提供比传统IO更高效、灵活的操作,支持非阻塞IO和选择器特性,适用于高并发、高吞吐量场景。NIO的核心概念包括通道(Channel)、缓冲区(Buffer)和选择器(Selector),能实现多路复用和异步操作。其应用场景涵盖网络通信、文件操作、进程间通信及数据库操作等。NIO的优势在于提高并发性和性能,简化编程;但学习成本较高,且与传统IO存在不兼容性。尽管如此,NIO在构建高性能框架如Netty、Mina和Jetty中仍广泛应用。
26 3
|
11天前
|
安全 算法 Java
Java CAS原理和应用场景大揭秘:你掌握了吗?
CAS(Compare and Swap)是一种乐观锁机制,通过硬件指令实现原子操作,确保多线程环境下对共享变量的安全访问。它避免了传统互斥锁的性能开销和线程阻塞问题。CAS操作包含三个步骤:获取期望值、比较当前值与期望值是否相等、若相等则更新为新值。CAS广泛应用于高并发场景,如数据库事务、分布式锁、无锁数据结构等,但需注意ABA问题。Java中常用`java.util.concurrent.atomic`包下的类支持CAS操作。
43 2
|
21天前
|
存储 缓存 安全
Java 集合江湖:底层数据结构的大揭秘!
小米是一位热爱技术分享的程序员,本文详细解析了Java面试中常见的List、Set、Map的区别。不仅介绍了它们的基本特性和实现类,还深入探讨了各自的使用场景和面试技巧,帮助读者更好地理解和应对相关问题。
37 5
|
2月前
|
存储 缓存 安全
Java 集合框架优化:从基础到高级应用
《Java集合框架优化:从基础到高级应用》深入解析Java集合框架的核心原理与优化技巧,涵盖列表、集合、映射等常用数据结构,结合实际案例,指导开发者高效使用和优化Java集合。
44 4
|
2月前
|
安全 Java 开发者
Java中WAIT和NOTIFY方法必须在同步块中调用的原因
在Java多线程编程中,`wait()`和`notify()`方法是实现线程间协作的关键。这两个方法必须在同步块或同步方法中调用,这一要求背后有着深刻的原因。本文将深入探讨为什么`wait()`和`notify()`方法必须在同步块中调用,以及这一机制如何确保线程安全和避免死锁。
46 4
|
2月前
|
Java
深入探讨Java中的中断机制:INTERRUPTED和ISINTERRUPTED方法详解
在Java多线程编程中,中断机制是协调线程行为的重要手段。了解和正确使用中断机制对于编写高效、可靠的并发程序至关重要。本文将深入探讨Java中的`Thread.interrupted()`和`Thread.isInterrupted()`方法的区别及其应用场景。
53 4
|
2月前
|
Java 数据处理 数据安全/隐私保护
Java处理数据接口方法
Java处理数据接口方法
27 1
|
9天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者