BI领域的分析利器交叉表使用详解

简介: 交叉表是在BI分析场景中使用占比最多的分析利器。通过交叉表对数据的承载和管理,用户可以一目了然地分析出各种场景指标以及对比,帮助用户作出决策。

小编有话说:交叉表是在BI分析场景中使用占比最多的分析利器。通过交叉表对数据的承载和管理,用户可以一目了然地分析出各种场景指标以及对比,帮助用户作出决策。

对于普通的表格展示数据,相信大家都非常熟悉了,今天给大家介绍的是BI领域的分析利器-交叉表,这个在BI分析场景中使用占比最多的分析利器。通过交叉表对数据的承载和管理,用户可以一目了然地分析出各种场景指标以及对比,帮助用户作出决策。

术语说明

行和列:行一般是作为一个系列分类的概念,里面通常放置维度字段;列与行对应,是用于展示统计分析的数据,通常放置度量字段。

钻取:钻取是改变维的层次,变换分析的粒度。它包括向上钻取和向下钻取。通过向导的方式,用户可以定义分析因素的汇总行,例如对于各地区各年度的销售情况,可以生成地区与年度的合计行,也可以生成地区或者年度的合计行。

联动:通俗讲,就是点击图表上的维度元素,其他相关图表也会按此维度相应变化。

跳转:单击仪表板中某个图表中的某个字段时,会跳转到与被点击部分相关联的报表(跳转有参数跳转和外部链接两种方式,参数跳转需结合全局参数使用)。

多角度排序

很多时候,当我们面对大量数据时,都需要用到排序来知晓 TOP N 等场景,在这里,交叉表提供了两种排序方式。

全量排序

全量排序是直接对某个字段(维度/度量)作 Full Ordering,即我们常规的表格排序 :

image.png

分组排序

分组排序顾名思义,此排序方式将会把数据分成各个大大小小不同层级的小组,然后对组内排序,比如你想看“男鞋类目 -> 红色鞋子 -> 销量TOP 3”,使用这种排序就可以一目了然了:

640.gif

分组汇总

表格分析的场景中,自然少不了统计相关的信息,这里我们提供了 总计/小计 两种汇总形式,并支持常规聚合 和 高级聚合 两种统计方式。

常规聚合

常规聚合即我们常见的 SUM(默认) / AVG / MAX / MIN ,举个例子,我们想要得到 上海 -> 产品大类 -> 产品子类的平均销售额 情况,只需要在汇总配置中,将“订单数量”的聚合设为 AVG 即可:

640 (1).gif

高级聚合

高级聚合相对于常规来讲,支持用多个其他字段的汇总结果,通过四则运算得到目标字段的汇总结果。比如我们可以实现:利润金额的汇总结果 = AVG(订单金额) * SUM(订单数量) 的效果:

image.png

钻取 / 联动 / 跳转

BI分析很重要的一环当属上钻/下钻,以及图表之间的联动展示了,这里我们将演示下如果配置以达到分析效果。另外,交叉表中额外还支持了外部跳转功能,以便可以将分析关联到外部报表或资源。

钻取

钻取可算得上BI分析当中使用率非常高的功能,试想一个场景:作为一个销售经理,想要看到 浙江省 的全貌销售数据,然后他想进一步了解 杭州市 的情况,再次去对比杭州市下 办公用品 的销量。那么这个需求就可以通过钻取实现了。

640 (2).gif

配置钻取的方式相当简单,我们只需要点击维度字段的“钻取”图表,即可创建一个钻取路径,后续可以往这个钻取路径里添加或删除任意字段,实现任意维度的上钻/下钻:钻取配置完成后,老板看报表的时候,就可以在不同的维度之间切换,便捷地洞察不同维度的数据了:

640 (3).gif

联动

如果我们想在交叉表中点击某个省(如“上海”)时,立即让下方的线图和饼图也相应展示“上海”的数据,就可以通过联动来实现了,配置的方式很简单,只需要你指定 该交叉表 与 哪些图表 联动即可(通过字段绑定建立联系):

image.png

最终的效果如下:

640 (4).gif

跳转

如果我们想通过当前的一个“销售大盘概览”交叉表,点击“上海”那一行对应的“订单数量”值后,立马跳转到对应“销售明细”仪表板,并且展示对应的“上海”的订单明细,我们便可以使用交叉表的跳转功能,结合仪表板的全局参数来实现跨报表联动。配置方式与联动类似,由于篇幅原因,这里暂时不作演示,有兴趣的同学可以深入尝试下。

条件格式

熟悉excel操作的同学应该对条件格式不陌生了,有了条件格式,可以方便决策者识别出关键信息点,并且了解到不同阀值的数据指标,当前我们提供了 阶段图标 和 数据条 类型的条件格式,配置方式和常规一致:

image.png

image.png

最终的展示效果如下:

image.png

行列混布

相对于其他BI产品的交叉表,行列混布可以称得上是Quick BI交叉表的一个特色分析功能,有了他,我们可以实现横向和纵向多层的分类结构,满足我们从不同角度更直观看数据的需求。

比方说:我们想要在行上凸显出“省份 -> 城市”的层级关系,并且还要在列上凸显出“产品类型 -> 产品子类 -> 订单数量/订单金额/利润金额”这样的层级关系,最终对应起来看一个对比数据。那么我们可以进行以下配置:

image.png

即行上拖入正常的 “省份” “城市” 两个维度,而列上也拖入两个 “产品类型” “产品子类” 维度,并且保留正常的三个度量 “订单数量/订单金额/利润金额”(原理是:拖入列中的维度,将以其“维度值”作为分类指标来进行数据归类)

最终的展示效果就会变成下面这个样子:

640 (5).gif

当然你也可以通过改变维度和度量的位置来实现自己的不同效果(注:度量字段会被强制排在一起),将 行列混布 和 行列转置 一起使用,你会看到更加不同的分析效果,有兴趣的同学不妨一试喔!

Quick BI 交叉表的新特性介绍大致先讲到这里,限于篇幅原因,本文只详解了交叉表的一部分功能,其他功能,大家可以直接到Quick BI中体验到:

  • 行列转置
  • 聚合/明细查询
  • 透视表模式
  • 主题模板
  • 行序号
  • 合并同类单元格
  • 冻结行列
  • 自动换行
  • 数据分页
  • 展示列(列顺序调换、列分组)
  • 系列别名/描述、对齐方式
  • 数值格式化(小数位、千分位、单位、百分比)
  • 多端适配
  • ......

作者介绍:曾昌盛 阿里巴巴前端工程师,现负责阿里集团BI产品(QuickBI 、FBI)的研发工作,深耕BI领域多年,对分析型组件的细节优化有着丰富的经验。

相关实践学习
阿里云实时数仓实战 - 用户行为数仓搭建
课程简介 1)学习搭建一个数据仓库的过程,理解数据在整个数仓架构的从采集、存储、计算、输出、展示的整个业务流程。 2)整个数仓体系完全搭建在阿里云架构上,理解并学会运用各个服务组件,了解各个组件之间如何配合联动。 3 )前置知识要求:熟练掌握 SQL 语法熟悉 Linux 命令,对 Hadoop 大数据体系有一定的了解   课程大纲 第一章 了解数据仓库概念 初步了解数据仓库是干什么的 第二章 按照企业开发的标准去搭建一个数据仓库 数据仓库的需求是什么 架构 怎么选型怎么购买服务器 第三章 数据生成模块 用户形成数据的一个准备 按照企业的标准,准备了十一张用户行为表 方便使用 第四章 采集模块的搭建 购买阿里云服务器 安装 JDK 安装 Flume 第五章 用户行为数据仓库 严格按照企业的标准开发 第六章 搭建业务数仓理论基础和对表的分类同步 第七章 业务数仓的搭建  业务行为数仓效果图  
相关文章
|
关系型数据库 BI 分布式数据库
PolarDB NL2BI解决方案,让你不懂SQL也能进行数据查询分析并生成BI报表
无需创建和开通资源,在预置环境中免费体验PolarDB MySQL及其NL2BI解决方案
PolarDB NL2BI解决方案,让你不懂SQL也能进行数据查询分析并生成BI报表
Quick BI V5.0发布:一键解锁智能小Q等全新智能商业分析能力
Quick BI V5.0发布:一键解锁智能小Q等全新智能商业分析能力
612 0
|
数据采集 数据可视化 数据挖掘
数据分析案例-BI工程师招聘岗位信息可视化分析
数据分析案例-BI工程师招聘岗位信息可视化分析
473 0
|
6月前
|
BI 数据安全/隐私保护
Dataphin功能Tips系列(69)数据资产如何快捷对接Qucik BI进行分析消费
QuickBI与Dataphin集成,实现数据权限统一管理,简化用户从权限申请到仪表板创建的流程,提升数据消费效率,保障数据安全,加速数据价值转化。
224 8
|
8月前
|
SQL 存储 人工智能
Quick BI V5.5上线:AI赋能全场景提效,分析决策 “快、准、稳”!
Quick BI 5.5版本应运而生,围绕"AI赋能+全场景提效",助力企业加速释放数据价值。此次升级,不仅让复杂分析"开箱即用",更通过智能工具与场景化能力,助力企业实现从数据洞察到决策落地的全流程闭环。
Quick BI V5.5上线:AI赋能全场景提效,分析决策 “快、准、稳”!
|
SQL 缓存 分布式计算
阿里云连续五年入选Gartner®分析和商业智能平台魔力象限,中国唯一
Gartner® 正式发布《分析与商业智能平台魔力象限》报告(Magic Quadrant™ for Analytics and Business Intelligence Platforms),阿里云成为唯一入围该报告的中国厂商,被评为“挑战者”(Challengers)。这也是阿里云连续五年入选该报告。
|
11月前
|
人工智能 自然语言处理 数据可视化
大模型+BI:一场关乎企业未来生死的数据智能卡位战 | 【瓴羊数据荟】数据MeetUp第四期
随着大模型技术突破,全球企业迎来数据智能革命。Gartner预测,到2027年,中国80%的企业将采用多模型生成式AI策略。然而,数据孤岛与高门槛仍阻碍价值释放。
518 8
大模型+BI:一场关乎企业未来生死的数据智能卡位战 | 【瓴羊数据荟】数据MeetUp第四期
|
11月前
|
数据可视化 数据挖掘 BI
Quick BI 深度体验:数据洞察,触手可及——打造智能零售分析利器
作为一名数据分析师,我深度体验了阿里云Quick BI。这是一款功能强大的全场景BI平台,支持多数据源接入与智能分析,操作简单且智能化程度高。通过上传Excel文件即可快速生成数据集,并利用丰富图表进行可视化分析。其“智能小Q助手”可对话式查询数据、自动生成报表,极大降低分析门槛。尽管新手引导和移动端体验尚有优化空间,但Quick BI无疑是企业实现数据驱动决策的有力工具。强烈推荐给希望提升业务竞争力的企业!
|
12月前
|
人工智能 数据可视化 搜索推荐
云市场伙伴动态 | 分析和商业智能平台领导者Tableau
云市场伙伴动态 | 分析和商业智能平台领导者Tableau
|
机器学习/深度学习 算法 数据挖掘
如何利用 BI 工具分析客户流失原因?
如何利用 BI 工具分析客户流失原因?
465 10