云知声推多款医疗 AI 产品,病历生成与质控产品今年将站 C 位

简介: 云知声的战略是把在垂直行业积累的AI技能放在云端,通过芯片去赋能设备端的边缘计算能力,进而把云端的技术向设备端进行输出。

雷锋网消息,在近日举行的CHIMA大会上,云知声召开了一场主题为“AI 赋能临床:从助手到专家”的医疗AI产品发布会。

除了系统解读智慧医疗整体战略之外,云知声还和相关的合作医院介绍了“医疗语音交互解决方案”、“智能病历生成”、“智能病历质控”、“ 智能候诊&智能随访解决方案”等重点产品的功能特点与应用情况。

“医疗语音交互解决方案”是云知声落地、应用最成熟的产品。而今年,围绕病历展开的生成与质控工作将成为云知声在医疗AI领域的重点布局方向。

AI与医疗属性天然契合

云知声成立于2012年,本质上是一家以“语音”为核心切入行业的创业公司。

云知声的底层AI技术由两部分构成,一个是和AI相关的技术,一个是和芯片相关的技术。

云知声IOT事业部总裁谢冠超表示,云知声的战略是把在垂直行业积累的AI技能放在云端,通过芯片去赋能设备端的边缘计算能力,进而把云端的技术向设备端进行输出。

“基于人工智能的技术,我们试图构建‘云端芯’一体的解决方案。一方面实现行业的智能化,另一方面,反向提升云知声在人工智能上的技能。”

在这样的思路下,云知声覆盖了家居、医疗、智能机器人、教育、金融、智慧社区、智慧出行等不同的应用领域。

据雷锋网(公众号:雷锋网)了解,云知声的IOT事业部有两个业务方向:智慧生活和智慧服务,而医疗是IOT事业部里非常重要的一个业务方向。

作为一个纯粹的AI技术公司,为什么云知声会想到入局医疗?

谢冠超解释到,原因在于医疗和AI的属性天然契合。

一个医生的核心专业能力包括医学知识、临床经验和操作技能。而一个医疗AI系统的建立是基于知识,用知识表、知识应用这些技术去形成一套知识图谱和专家系统,对应的是医学知识。

在此之后,AI会用一些基于数据的技术,比如统计分析、数据挖掘,将获得的临床知识图谱或者是专家系统,和真实世界去做对应。

“一个基于AI的医疗系统和一个医生的成长路径是非常吻合的,这就是为什么我们认为医疗和AI的核心属性天然契合。”

病历生成与质控产品将成今年主力

尽管云知声这次的大会主题的“从助手到专家”。但谢冠超认为,目前用“助手”来描述AI应用在这个行业里的地位会比较客观,“助手是一个有专业能力的人,但是助手不能试图去做独立自主的判断决策。”

据了解,云知声医疗产品线目前已完成从感知到认知的战略升级,即从识别向理解、决策升级。而此次会上一系列覆盖医院整体链路流程产品的发布,也是这个战略升级下的一个缩影。

谢冠超向雷锋网表示,语音交互的解决方案占据云知声医疗业务收入的大部分,但是围绕病历的质控是今年年初开始主推的产品,目前质控的收入占比和增长势头比较快。

医疗语音交互解决方案

据美国医学会(AMA)的统计,医生职业生涯大约35%-40%的时间用于病历书写及相关文案工作上。医生键盘录入速度受限于熟练程度,效率低下,且多使用模板,无法突出患者病情特异性。内容重复较多,使得病历千篇一律,失去科研价值。使用复制、黏贴,更会大概率成为诊疗事故的诱因。

云知声医疗 AI 产品经理郭崇亮介绍,云知声医疗语音交互解决方案由医疗语音识别引擎、语音录入客户端、定制麦克风和鼠标组成。

为适应医院不同科室实际的使用需求,该系统提供两个版本。

其中,标准版提供一种方便快捷的辅助录入方式,医生通过口述患者病情,系统自动将语音转为文字,实时将文本输入至光标所在位置,从而提高录入效率。

升级版则将专科识别模型、语音操控接口、语音过滤等专科化功能,都作为单独模块开发,实现系统的低耦合。可根据业务和场景需要与标准版系统进行自由组装,打包成不同的专科方案。

2016年,云知声就已在协和医院落地了语音识别技术导诊系统、语音识别技术电子病历系统。刚上线时,系统的准确率只有80%。但是,随着医生的逐渐使用,准确率的问题得到了解决。

“当医生说一个新的名词时,AI是不可能会识别的。但是当系统识别之后,医生会对结果进行修改,后台会记录这一行为,从而让AI去进行主动挖掘。”

据悉,云知声医疗语音交互解决方案已在福建省立医院门诊全科室上线,识别准确率平均达 97%,病历书写效率提升达40% 。

病历的自动生成与质控

病历的自动生成与质控是云知声今年的主打产品,围绕这两块内容,主要有哪些成果?

在智能病历生成方面,云知声尝试利用医患之间的对话自动生成病历。这跟电子语音病历录入的最大的不同是在于,电子语音病历录入是100%的把医生所讲的话转化成文字。

而电子病例自动生成需要摘要的过程,把医患之间的谈话、摘要进行总结,形成一个合规的电子病历,所以AI系统需要理解对话。

“病历的自动生成是一项复杂的工作。不同的科室,不同的病种,需要摘要的内涵、内容不一样,所以它就需要知识图谱的底层支持。”

当然,电子病历自动生成也没有面向全科室,而是在部分科室做。谢冠超说,“我们病历生成的产品推的是全科室,但是我们在知识图谱建设上面,遵循的原还是病种的多发性。”

2019年4月17日,国家卫健委发布通知,将病案首页质量和电子病历应用功能水平评价纳入三级公立医院绩效考核。

病历的自动生成可以理解成医生的“减负”工具。但是为什么还要进行质控?对医院来讲,病历质控除了满足监管的诉求,最大的一个问题解决医患纠纷。

作为医院管理的核心部分,不管是工作量还是覆盖量,病历的质控都是医院的一大痛点。

过去HIS厂商也在尝试解决,里面也有一部分质控的功能。但是,目前我国三甲医院每天的出院患者多达上百例,病历质控工作量大、专业性强,但电子病历系统的模块仅能完成简单的形式质控,内涵质控仍需要专业人员手动完成。

以东南大学附属中大医院为例,在使用 AI 系统辅助质控前,中大医院质控专员仅有四个人,全质量的质控数量是五到八份,效率非常低,实际高质量质控占比只有10%,大量病历没有能够实现质控。

“医生能不能基于自己的主诉推断出第一诊断,需要医学知识的积累。而HIS厂商没有医学知识,没办法去判断医生的主诉和他的第一诊断是不是构成闭环。”谢冠超说到。

云知声则是运用AI技术,基于知识图谱实现了一个比较完整的病历的自动质控,不仅仅涵盖了形式上的缺陷,也涵盖内涵上的缺陷。

2018年3月,中大医院与云知声沟通了病历质控的事情,主要做了三件事情:第一步,进行规则梳理;第二步,开发质控引擎;第三步,医院业务的流程再造;第四步,从终末质控到环节质控;最后是质检引擎的自学习。

中大医院网络信息中心主任史亚香表示,目前中大医院病历质检覆盖率已达100% ,质检缺陷覆盖面由原来的重点缺陷检查升级为全缺陷检查,质检工作提速接近10倍。

云知声AI Labs 资深技术专家刘升平说到,智能+医疗三要素是语言、知识、决策。从文本或者语言中构建知识图谱,基于知识图谱理解辅助决策,知识图谱是智能+医疗的基石。再利用知识图谱+医疗的核心技术是病历后结构化和标准化,基于医疗知识图谱的推理和决策,从高质量数据源去构建一个知识图谱。

截至目前,在医疗知识图谱领域,云知声已储备约50万医学概念,超过169万医学术语库,超过398万医学关系库,以及52万医学属性值对,涵盖了绝大部分药品、疾病、科室与检查,规模体量达国际领先水准。

可以预见的是,随着医疗知识图谱的不断丰富,云知声可以将更多的病历自动生成和质控方案落地到更多科室。

不要做项目,要做标准化产品

目前云知声大概有500多人,覆盖的业务面也很宽泛。在采访中,雷锋网曾询问谢冠超对于产品在医院落地的心得。

他坦言,云知声不太希望把每一个客户做成一个个的项目,而是会综合所有共性的需求,形成一套相对标准化的产品, “虽然从技术和产品规划层面来看,挑战比较大。但是这样做的好处就在于能够迅速的完成客户的复制,不用为每个客户去做大量的定制开发。”

另外,为了让AI应用实现更好的落地,要跟不同医院进行数据对接,“数据对接是非常核心的问题,原因是国内的医院每一个医院的数据结构千差万别,医院本身的信息化改造意愿以及信息化建设的基础都不一样。如果我们不能高效地完成数据适配,不管有什么AI产品,都很难在医院落地。”

谢冠超认为,虽然大家都在做医疗,其实每个人所做的路径和方式差别很大。而云知声选择的是一个比较艰难的路径。“艰难路径的内涵在于,所做的工作都是基于整个临床的流程,去帮助医生提升效率,提升质量。”

“我们始终相信人工智能是赋能性的技术,它本身非常难以成为一个行业,它最大的价值是和今天的传统行业去做结合,去改进、提升现有的业务模式。”

相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
目录
相关文章
|
7天前
|
人工智能 搜索推荐 安全
AI技术在医疗领域的应用与挑战
【10月更文挑战第27天】 本文探讨了人工智能(AI)在医疗领域的应用,包括疾病诊断、药物研发和患者管理等方面。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题和技术局限性等。通过对这些方面的深入分析,我们可以更好地理解AI在医疗领域的潜力和发展方向。
106 59
|
1天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用及其未来趋势
【10月更文挑战第34天】随着人工智能技术的飞速发展,其在医疗领域的应用也日益广泛。本文将探讨AI技术在医疗诊断中的具体应用案例,分析其对提升诊断效率和准确性的积极影响,并预测未来AI在医疗诊断中的发展趋势。通过实际代码示例,我们将深入了解AI如何帮助医生进行更精准的诊断。
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
7 1
|
3天前
|
存储 人工智能 分布式计算
大数据& AI 产品月刊【2024年10月】
大数据& AI 产品技术月刊【2024年10月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
3天前
|
机器学习/深度学习 人工智能 搜索推荐
探索AI在医疗诊断中的革命性应用
【10月更文挑战第29天】 随着人工智能技术的飞速发展,其在医疗领域的应用已成为推动现代医疗服务创新的重要力量。本文旨在探讨AI技术如何在医疗诊断中发挥其独特优势,通过分析AI在影像诊断、疾病预测和个性化治疗计划制定等方面的应用案例,揭示AI技术如何提高诊断的准确性和效率,以及面临的挑战和未来发展趋势。
20 1
|
4天前
|
人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第31天】本文将探讨AI技术在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念开始,然后详细介绍其在医疗领域的应用,包括疾病诊断、药物研发、患者护理等方面。最后,我们将讨论AI技术在医疗领域面临的挑战,如数据隐私、算法偏见等问题。
|
8天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗领域的革命:智能诊断系统的未来
在科技日新月异的今天,人工智能(AI)技术正逐渐渗透到我们生活的每一个角落,其中医疗领域尤为显著。本文将探讨AI在医疗诊断中的应用及其带来的变革,重点介绍智能诊断系统的发展现状与未来趋势。通过深入浅出的方式,我们将揭示AI如何改变传统医疗模式,提高诊断效率和准确性,最终造福广大患者。
|
8天前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
25 2
|
2天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第33天】随着人工智能技术的不断发展,其在医疗领域的应用也越来越广泛。从辅助诊断到治疗方案的制定,AI技术都发挥着重要作用。然而,随之而来的挑战也不容忽视,如数据隐私保护、算法的透明度和可解释性等问题。本文将探讨AI技术在医疗领域的应用及其面临的挑战。
10 0
|
9天前
|
机器学习/深度学习 数据采集 人工智能
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第26天】近年来,深度学习技术在医学影像诊断中的应用日益广泛,通过训练大量医学影像数据,实现对疾病的准确诊断。例如,卷积神经网络(CNN)已成功用于识别肺癌、乳腺癌等疾病。深度学习不仅提高了诊断准确性,还缩短了诊断时间,提升了患者体验。然而,数据隐私、数据共享和算法透明性等问题仍需解决。未来,AI将在医学影像诊断中发挥更大作用,成为医生的得力助手。
33 0

热门文章

最新文章