Python爬虫入门教程 59-100 python爬虫高级技术之验证码篇5-极验证识别技术之二

简介: @[toc]图片比对昨天的博客已经将图片存储到了本地,今天要做的第一件事情,就是需要在两张图片中进行比对,将图片缺口定位出来缺口图片完整图片计算缺口坐标对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离 def get_distance(self,cut_image,full_image): # print(cut_image.

@[toc]

图片比对

昨天的博客已经将图片存储到了本地,今天要做的第一件事情,就是需要在两张图片中进行比对,将图片缺口定位出来

缺口图片
image

完整图片
image

计算缺口坐标

对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离

    def get_distance(self,cut_image,full_image):

        # print(cut_image.size)
        threshold = 50
        for i in range(0,cut_image.size[0]):
            for j in range(0,cut_image.size[1]):
                pixel1 = cut_image.getpixel((i, j))
                pixel2 = full_image.getpixel((i, j))
                res_R = abs(pixel1[0] - pixel2[0])  # 计算RGB差
                res_G = abs(pixel1[1] - pixel2[1])  # 计算RGB差
                res_B = abs(pixel1[2] - pixel2[2])  # 计算RGB差

                if res_R > threshold and res_G > threshold and res_B > threshold:
                    return i  # 需要移动的距离

极验证对于用户行为检测是有专门的算法的,找到一篇比较老的文章

https://blog.csdn.net/ieternite/article/details/51483491

如果我们直接把上面算出来的缺口位置放到前面脚本里,你会发现即使移动的位置正确了,提示却是“怪物吃了饼图”,验证不通过。很显然,geetest识别出了这个动作并不是人的行为。这我们就需要去查看自然人滑动鼠标和我们代码实现的滑动在轨迹上有什么不同。

鼠标拖动滑块进行移动的时候,也是遵循人类行为的,这个地方,你可以参考文章

https://www.cnblogs.com/xiao-apple36/p/8878960.html

移动滑块

这部分和我们之前滑动验证码识别是一致的,通过selenium进行人行为实现

    # 移动滑块
    def start_move(self, distance):
        element = self.driver.find_element_by_xpath('//div[@class="gt_slider_knob gt_show"]')


        # 使用滑块的一半进行偏移设置
        distance -= element.size.get('width') / 2
        distance += 15

        # 按下鼠标左键
        ActionChains(self.driver).click_and_hold(element).perform()
        time.sleep(0.5)
        while distance > 0:
            if distance > 20:
                # 如果距离大于20,就让他移动快一点
                span = random.randint(5, 8)
            else:
                # 快到缺口了,就移动慢一点
                span = random.randint(2, 3)
            ActionChains(self.driver).move_by_offset(span, 0).perform()
            distance -= span
            time.sleep(random.randint(10, 50) / 100)

        ActionChains(self.driver).move_by_offset(distance, 1).perform()
        ActionChains(self.driver).release(on_element=element).perform()

运行效果,第一次验证失败了,等待7秒左右进行第二次验证,注意成功了。
在这里插入图片描述
最后要调整的是验证失败,需要重复验证

验证失败

验证失败,在拖动的下面继续编写即可,属于正常的逻辑代码了

       self.start_move(dis)

        # 如果出现错误
        try:
            WebDriverWait(self.driver, 5).until(
                EC.element_to_be_clickable((By.XPATH, '//div[@class="gt_ajax_tip gt_error"]')))
            print("验证失败")
            return
        except TimeoutException as e:
            pass

        # 判断是否验证成功
        try:
            WebDriverWait(self.driver, 10).until(
                EC.element_to_be_clickable((By.XPATH, '//div[@class="gt_ajax_tip gt_success"]')))
        except TimeoutException:
            print("重新验证....")
            time.sleep(5)
            # 失败后递归执行拖动
            self.analog_drag()
        else:
            print("验证成功")

写在后面

到此为止,极验证已经编写完毕,代码中还有很多地方需要进行调整

例如

element = self.driver.find_element_by_xpath('//div[@class="gt_slider_knob gt_show"]') 

上面获取元素的方式,很容易导致目标元素没有捕获到,然后项目直接报错退出,所以需要进行完善

driver 需要及时的关闭,否则会在你的任务管理器中出现大量的chromedriver.exe 进程

image

极验证验证码破解方式基本遵循滑动验证码,核心内容在于两个图片的处理,希望你可以学习到。

扫码关注微信公众账号,回复0321获取验证码源码

相关文章
|
26天前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
27天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
28天前
|
数据采集 Web App开发 监控
高效爬取B站评论:Python爬虫的最佳实践
高效爬取B站评论:Python爬虫的最佳实践
|
29天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
20天前
|
数据采集 JavaScript 程序员
探索CSDN博客数据:使用Python爬虫技术
本文介绍了如何利用Python的requests和pyquery库爬取CSDN博客数据,包括环境准备、代码解析及注意事项,适合初学者学习。
59 0
|
1月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
87 6
|
4月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
205 4
|
4月前
|
数据采集 存储 搜索推荐
打造个性化网页爬虫:从零开始的Python教程
【8月更文挑战第31天】在数字信息的海洋中,网页爬虫是一艘能够自动搜集网络数据的神奇船只。本文将引导你启航,用Python语言建造属于你自己的网页爬虫。我们将一起探索如何从无到有,一步步构建一个能够抓取、解析并存储网页数据的基础爬虫。文章不仅分享代码,更带你理解背后的逻辑,让你能在遇到问题时自行找到解决方案。无论你是编程新手还是有一定基础的开发者,这篇文章都会为你打开一扇通往数据世界的新窗。
|
5月前
|
数据采集 存储 JSON
从零到一构建网络爬虫帝国:HTTP协议+Python requests库深度解析
【7月更文挑战第31天】在网络数据的海洋中,使用Python的`requests`库构建网络爬虫就像探索未知的航船。HTTP协议指导爬虫与服务器交流,收集信息。HTTP请求包括请求行、头和体,响应则含状态行、头和体。`requests`简化了发送各种HTTP请求的过程。
86 4
|
2月前
|
数据采集 存储 数据挖掘
深入探索 Python 爬虫:高级技术与实战应用
本文介绍了Python爬虫的高级技术,涵盖并发处理、反爬虫策略(如验证码识别与模拟登录)及数据存储与处理方法。通过asyncio库实现异步爬虫,提升效率;利用tesseract和requests库应对反爬措施;借助SQLAlchemy和pandas进行数据存储与分析。实战部分展示了如何爬取电商网站的商品信息及新闻网站的文章内容。提醒读者在实际应用中需遵守法律法规。
202 66