Spark + AI summit 2019北美技术峰会华丽落幕

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 本次SAIC含盖了数据工程与数据科学的内容,包括AI产品化的最佳实践案例分享:超大数据规模下,利用流数据处理确保训练数据更新的时效性,完成数据质量监控,测试以及数据模型服务。也有对流行的软件框架如TensorFlow,SciKit-Learn,Keras,PyTorch,DeepLearning4J,BigDL以及Deep Learning Pipelines等,分别进行深入的主题分享探讨。

| 导语

Apache Spark社区最大的技术峰会,SPARK + AI 峰会(SAIC),于4月23-25日,在美国旧金山落下帷幕。

数据与人工智能需要结合:最佳的人工智能应用,需要有大量大规模持续更新的训练数据,方能构建其最佳的数据模型,时至今日,Apache Spark已成为独特的一体化数据分析引擎,它集成了大规模数据处理和领先的机器学习与人工智能算法。

本次SAIC含盖了数据工程与数据科学的内容,包括AI产品化的最佳实践案例分享:超大数据规模下,利用流数据处理确保训练数据更新的时效性,完成数据质量监控,测试以及数据模型服务。也有对流行的软件框架如TensorFlow,SciKit-Learn,Keras,PyTorch,DeepLearning4J,BigDL以及Deep Learning Pipelines等,分别进行深入的主题分享探讨。

除了Spark + AI主题外,本次峰会,为开发者,数据科学家以及探寻最佳数据与人工智能工具来构架创新型产品的技术实践者们,提供了一站式交流的独特体验,超过了5000名来自世界各地的工程师,数据科学家,人工智能专家,研究学者以及商务人士,加入到了这3天的深度交流与学习中。

| SAIC主题分享包括了如下内容:

  • Apache Spark的下一步计划
  • 机器学习产品化的最佳实践
  • 用MLflow来管理机器学习生命周期
  • 最新的机器学习与深度学习框架进展
  • 数据与人工智能一体化数据分析平台
  • 人工智能应用实践案例分享
  • Apache Spark的应用案例分享
  • 结构化与持续流数据处理应用

| 分论坛也提供为来自不同技术背景人士提供了多样化的议题选择:

  • 人工智能
  • 数据科学
  • 深度学习技术
  • 机器学习产品
  • 开发者
  • 企业专场
  • Python与高级数据分析
  • 前沿学术研究
  • 技术实现深入探讨
  • Apache Spark应用与生态

| PPT下载地址

https://www.slidestalk.com/x/3623/saic_2019_na

原文链接

https://mp.weixin.qq.com/s/CSTqXHCpJPvlkVAeaY1mIw

为 Spark 爱好者提供一个交流技术和传递资讯的平台,在这里你可以掌握大数据计算领域最前沿的资讯,可以与 Spark 技术大牛面对面交流,还有不定期社区福利领取哟~

image

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
17天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
74 3
|
26天前
|
人工智能 搜索推荐 安全
AI技术在医疗领域的应用与挑战
【10月更文挑战第27天】 本文探讨了人工智能(AI)在医疗领域的应用,包括疾病诊断、药物研发和患者管理等方面。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题和技术局限性等。通过对这些方面的深入分析,我们可以更好地理解AI在医疗领域的潜力和发展方向。
132 59
|
7天前
|
机器学习/深度学习 人工智能 搜索推荐
AI技术在医疗领域的应用####
本文探讨了人工智能(AI)技术在医疗领域的创新应用及其带来的革命性变化。通过分析AI在疾病诊断、个性化治疗、药物研发和患者管理等方面的具体案例,展示了AI如何提升医疗服务的效率和准确性。此外,文章还讨论了AI技术面临的挑战与伦理问题,并展望了未来的发展趋势。 ####
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在医疗领域的应用与前景####
本文探讨了人工智能(AI)在医疗领域的多方面应用,包括疾病诊断、个性化治疗、患者管理以及药物研发等。通过对现有技术的梳理和未来趋势的展望,旨在揭示AI如何推动医疗行业的变革,并提升医疗服务的质量和效率。 ####
36 5
|
15天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
81 11
|
20天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
74 4
|
20天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
24天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗健康领域的应用与挑战####
本文旨在探讨人工智能(AI)技术在医疗健康领域的创新应用及其面临的主要挑战。通过深入分析AI如何助力疾病诊断、治疗方案优化、患者管理及药物研发,本文揭示了AI技术在提升医疗服务质量、效率和可及性方面的巨大潜力。同时,文章也指出了数据隐私、伦理道德、技术局限性等关键问题,并提出了相应的解决策略和未来发展方向。本文为医疗从业者、研究者及政策制定者提供了对AI医疗技术的全面理解,促进了跨学科合作与创新。 ####
|
23天前
|
人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第31天】本文将探讨AI技术在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念开始,然后详细介绍其在医疗领域的应用,包括疾病诊断、药物研发、患者护理等方面。最后,我们将讨论AI技术在医疗领域面临的挑战,如数据隐私、算法偏见等问题。