IT职场新人选python,go还是java?用数据来说话

简介: 最近有读者在后台问,刚参加工作,想选一个职业方法,问我现在python很火,但是貌似就业机会不是很多,所以比较纠结现在到底是学python,go还是java. 所以我就想我们能不能用数据说话,看看python,go,java这三种热门语言,到底在市场上什么行情。

最近有读者在后台问,刚参加工作,想选一个职业方法,问我现在python很火,但是貌似就业机会不是很多,所以比较纠结现在到底是学python,go还是java. 所以我就想我们能不能用数据说话,看看python,go,java这三种热门语言,到底在市场上什么行情。

说到分析,那我们要先拿到数据,这次的数据还是来自我们的爬虫好伙伴,拉勾网,我们各抓取了这三种语言的市场行情数据来分析,话不多说,我们看看怎么去爬取数据和分析。

首先来说老套路,右击网页----->检查------>network抓包(因为拉勾网是异步加载)

1.requests请求数据

点击python搜索页,打开network抓包,我们看看下面的图片

我们可以看到这次的请求模式是post请求,而不是get请求,这点要注意,所以我们代码是请求页面的时候要使用requests.post来请求

这里还有一点要注意,我们看到post请求下面还有一条请求,我们可以看看,它是什么

可以看到这是一个get请求,可能我们会忽略这点,如果忽略了这个get请求,我们在后面的代码执行时会遇到麻烦,这是拉钩的一种反爬手段,我们如果采用原来的固定cookies(headers)信息去爬取数据的时候,可能只能爬个4-5页面就会出现下面的错误

{'status': False, 'msg': '您操作太频繁,请稍后再访问', 'clientIp': 'xxxxxxx', 'state': 2402}

上面的错误看起来是因为IP地址被封导致的,但是一般IP地址被封,我们用网页也是打不开的,但是这里你可以试试用网上去访问页面,其实还是可以正常访问的,所以这里应该不是IP被封的问题,这里其实是拉钩的反爬机制,他是改变了你浏览器端的cookie信息,导致你访问不了,如果你再代码里还是用原来的老套路,cookie信息是定死的,那就着了他的道了。

这其实就是上面的get请求的作用,也就是说我们的cookie信息要在代码里是动态的,用上一次访问返回的cookie信息,进行当前的页面访问,那怎么从前一个url访问后拿取cookie呢,这就要用到requests.session了,另外referer也不能少的,少了一样可能都会出现操作太频繁的回复的,这里的referer其实就是你是从哪个页面跳转来的,我们要访问的URL是"https://www.lagou.com/jobs/positionAjax.json?needAddtionalResult=false", 他是一个Ajax页面,是不对外访问的,所以如果你不加referer而直接去访问这个Ajax页面,服务器肯定知道你是一个爬虫程序。

具体requests.session怎么写,我们会在下面的代码里给出。说到这里我们大概能访问到页面了。

2.分析页面,获取数据

我们可以看到下面的图片,其他这里得到数据很简单,他返回的是一个JSON类型,而且比较规范,我们稍微处理下就能得到我们想要的数据

3.代码

#coding:utf-8
"""
Created on 2019-05-13
@title: ''
@author: 南山南
公众号:pythonislover
"""

import requests
import re
from bs4 import  BeautifulSoup
import pandas as pd
import xlwt
import random
import time

base_url = 'https://www.lagou.com/jobs/positionAjax.json?needAddtionalResult=false'





lagou_list = []
def get_lagou(keyword,page_count):
    for i in range(page_count):

        # cookie_dict = dict()
        # s = requests.session()
        # s.cookies.update(cookie_dict)
        # print(cookie_dict)

        Myheaders = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.131 Safari/537.36',
            'Referer': 'https://www.lagou.com/jobs/list_java?labelWords=&fromSearch=true&suginput='
            }

        time.sleep(5)
        session = requests.session()  # 获取session
        session.headers.update(Myheaders) #更新header信息,cookies会变
        session.get("https://www.lagou.com/jobs/list_python?city=%E5%85%A8%E5%9B%BD&cl=false&fromSearch=true&labelWords=&suginput=")

        try:
            from_data = {
            'first': 'false',
            'pn': str(i+1),
            'kd': keyword
            }

            print('正在爬取第%s职位的%s页' %(keyword,str(i+1)))

            response = session.post(base_url,headers=Myheaders,data= from_data)
            response.encoding = 'utf-8'
            info_list = response.json()['content']['positionResult']['result']
            companyIds_list = []
            for job in info_list:
                information = []
                information.append(keyword)  # 岗位对应ID
                information.append(job['city'])  # 岗位对应城市
                information.append(job['companyFullName'])  # 公司名
                information.append(job['companySize'])  # 公司规模
                information.append(job['companyLabelList'])  # 福利待遇
                information.append(job['district'])  # 工作地点
                information.append(job['education'])  # 学历要求
                information.append(job['firstType'])  # 工作类型
                information.append(job['positionName'])  # 职位名称
                information.append(job['salary'])  # 薪资
                information.append(job['workYear'])  # 工作年限
                information.append(job['financeStage'])  # 公司发展阶段
                information.append(job['skillLables'])  # 技能要求
                lagou_list.append(information)
                companyIds_list.append(job['companyId'])
            # print(companyIds_list)
            # companyIds_str ='%2C'.join(str(s) for s in companyIds_list)
            # print(companyIds_str)
            # get_url='https://www.lagou.com/c/approve.json?companyIds='+companyIds_str
            # print(get_url)
            # res = requests.get(get_url,headers = Myheaders)
            # get_cookies = res.cookies.get_dict()


        except Exception as e:
            print('程序出错',e)
        continue

    return lagou_list


def main():
    info_result = []
    title = ['职位类型','城市','公司名','公司规模','福利待遇', '工作地点', '学历要求', '工作类型', '职位名称', '薪资', '工作年限','公司发展阶段','技能要求']
    info_result.append(title)

    #抓取python语言信息
    lagou_list_python = get_lagou('python',20)

    # 抓取java语言信息
    lagou_list_java = get_lagou('java', 20)

    # 抓取go语言信息
    lagou_list_go = get_lagou('go', 20)


    info_result.extend(lagou_list_python)
    info_result.extend(lagou_list_java)
    info_result.extend(lagou_list_go)

    # 创建workbook,即excel
    workbook = xlwt.Workbook(encoding='utf_8_sig')
    # 创建sheet,第二参数用于确认同一个cell单元是否可以重设值
    worksheet = workbook.add_sheet('lagou', cell_overwrite_ok=True)
    for i, row in enumerate(info_result):
        for j, col in enumerate(row):
            worksheet.write(i, j, col)
    workbook.save('lagou.xls')


if __name__ == '__main__':
    main()
    # get_lagou('python',2)
    # print(res)
    # df = pd.DataFrame(res)
    # df.to_csv('lagou.csv', encoding='utf_8_sig')

4.分析数据

1.薪资对比

bar = Bar("薪资分布图", "数量")
bar.add("python薪资分布", df_python['薪资'], df_python['count'], is_more_utils=True)
bar.add("java薪资分布", df_java['薪资'], df_java['count'], is_more_utils=True)
bar.add("go薪资分布", df_go['薪资'], df_go['count'], is_more_utils=True)
# bar.print_echarts_options() # 该行只为了打印配置项,方便调试时使用
bar.render('薪资分布图.html')  # 生成本地 HTML 文件

从图上大致可以看成在高薪资这块,GO语言的优势比较大,"钱途"还是有的,对于python来说,薪资分布比较均匀,各个层次的人才都需要,但是如果想拿高薪,还是需要努力的,对于java来说呢,感觉比python还低一等,也许是java的需求量比较大,平均下面,薪资就不咋的了。

2.各大中心城市职位需求量

bar = Bar("职位需求量分布图", "数量")
bar.add("python需求量分布", df_python_pos['城市'], df_python_pos['count'], is_more_utils=True)
bar.add("java需求量分布", df_java_pos['城市'], df_java_pos['count'], is_more_utils=True)
bar.add("go需求量分布", df_go_pos['城市'], df_go_pos['count'], is_more_utils=True)
# bar.print_echarts_options() # 该行只为了打印配置项,方便调试时使用
bar.render('各大城市职位需求量大致分布图.html')  # 生成本地 HTML 文件

上图我们可以看到传统的北上广深,职位需求还是远远大于其他城市(抽样数据),但是杭州,成都也是后起之秀,对于我所在的大南京,哎,不说了,哭会去。。。。,但是大城市压力也大,房价也高,如果是年轻人,可以拼几年,如果可以本地安家当然好,如果不能就老老实实回二线城市,哈哈,个人意见,勿喷。

3.学历要求

pie = Pie("各类职位中学历所占的比例", title_pos='center')
pie.add(
    "python",
    df_python_education['学历要求'],
    df_python_education['count'],
    center=[50, 70],
    radius=[20, 30],
    label_text_color=None,
    is_label_show=True,
    legend_orient="vertical",
    legend_pos="left",
)

pie.add(
    "",
    df_java_education['学历要求'],
    df_java_education['count'],
    center=[70, 70],
    radius=[20, 30],
    label_text_color=None,
    is_label_show=True,
    legend_orient="vertical",
    legend_pos="left",
)

pie.add(
    "",
    df_go_education['学历要求'],
    df_go_education['count'],
    center=[90, 70],
    radius=[20, 30],
    label_text_color=None,
    is_label_show=True,
    legend_orient="vertical",
    legend_pos="left",
)

pie.render('python学历要求分布.html')


可以看到搞IT的大多数还是本科,如果可以研究生当然更好,薪资也会更好,大家也可以自己拿数据,分析下研究生和本科生的薪资差距。

完整代码获取关注公众号:pythonislover , 回复"职位"。

目录
相关文章
|
1月前
|
前端开发 JavaScript Java
java常用数据判空、比较和类型转换
本文介绍了Java开发中常见的数据处理技巧,包括数据判空、数据比较和类型转换。详细讲解了字符串、Integer、对象、List、Map、Set及数组的判空方法,推荐使用工具类如StringUtils、Objects等。同时,讨论了基本数据类型与引用数据类型的比较方法,以及自动类型转换和强制类型转换的规则。最后,提供了数值类型与字符串互相转换的具体示例。
|
3月前
|
算法 Java 数据处理
从HashSet到TreeSet,Java集合框架中的Set接口及其实现类以其“不重复性”要求,彻底改变了处理唯一性数据的方式。
从HashSet到TreeSet,Java集合框架中的Set接口及其实现类以其“不重复性”要求,彻底改变了处理唯一性数据的方式。HashSet基于哈希表实现,提供高效的元素操作;TreeSet则通过红黑树实现元素的自然排序,适合需要有序访问的场景。本文通过示例代码详细介绍了两者的特性和应用场景。
57 6
|
3月前
|
存储 Java API
深入剖析Java Map:不只是存储数据,更是设计艺术的体现!
【10月更文挑战第17天】在Java编程中,Map是一种重要的数据结构,用于存储键值对,并展现了设计艺术的精髓。本文深入剖析了Map的设计原理和使用技巧,包括基本概念、设计艺术(如哈希表与红黑树的空间时间权衡)、以及使用技巧(如选择合适的实现类、避免空指针异常等),帮助读者更好地理解和应用Map。
120 3
|
7天前
|
存储 Java BI
java怎么统计每个项目下的每个类别的数据
通过本文,我们详细介绍了如何在Java中统计每个项目下的每个类别的数据,包括数据模型设计、数据存储和统计方法。通过定义 `Category`和 `Project`类,并使用 `ProjectManager`类进行管理,可以轻松实现项目和类别的数据统计。希望本文能够帮助您理解和实现类似的统计需求。
44 17
|
2月前
|
JSON Java 程序员
Java|如何用一个统一结构接收成员名称不固定的数据
本文介绍了一种 Java 中如何用一个统一结构接收成员名称不固定的数据的方法。
29 3
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
比较Python和Java哪个更好
比较Python和Java哪个更好
65 5
|
2月前
|
Java 程序员 容器
Java中的变量和常量:数据的‘小盒子’和‘铁盒子’有啥不一样?
在Java中,变量是一个可以随时改变的数据容器,类似于一个可以反复打开的小盒子。定义变量时需指定数据类型和名称。例如:`int age = 25;` 表示定义一个整数类型的变量 `age`,初始值为25。 常量则是不可改变的数据容器,类似于一个锁死的铁盒子,定义时使用 `final` 关键字。例如:`final int MAX_SPEED = 120;` 表示定义一个名为 `MAX_SPEED` 的常量,值为120,且不能修改。 变量和常量的主要区别在于变量的数据可以随时修改,而常量的数据一旦确定就不能改变。常量主要用于防止意外修改、提高代码可读性和便于维护。
|
2月前
|
存储 缓存 安全
在 Java 编程中,创建临时文件用于存储临时数据或进行临时操作非常常见
在 Java 编程中,创建临时文件用于存储临时数据或进行临时操作非常常见。本文介绍了使用 `File.createTempFile` 方法和自定义创建临时文件的两种方式,详细探讨了它们的使用场景和注意事项,包括数据缓存、文件上传下载和日志记录等。强调了清理临时文件、确保文件名唯一性和合理设置文件权限的重要性。
157 2
|
2月前
|
Java
Java 8 引入的 Streams 功能强大,提供了一种简洁高效的处理数据集合的方式
Java 8 引入的 Streams 功能强大,提供了一种简洁高效的处理数据集合的方式。本文介绍了 Streams 的基本概念和使用方法,包括创建 Streams、中间操作和终端操作,并通过多个案例详细解析了过滤、映射、归并、排序、分组和并行处理等操作,帮助读者更好地理解和掌握这一重要特性。
39 2
|
3月前
|
存储 SQL 小程序
JVM知识体系学习五:Java Runtime Data Area and JVM Instruction (java运行时数据区域和java指令(大约200多条,这里就将一些简单的指令和学习))
这篇文章详细介绍了Java虚拟机(JVM)的运行时数据区域和JVM指令集,包括程序计数器、虚拟机栈、本地方法栈、直接内存、方法区和堆,以及栈帧的组成部分和执行流程。
47 2
JVM知识体系学习五:Java Runtime Data Area and JVM Instruction (java运行时数据区域和java指令(大约200多条,这里就将一些简单的指令和学习))