Python爬虫入门教程 14-100 All IT eBooks多线程爬取

简介: 1.All IT eBooks多线程-写在前面对一个爬虫爱好者来说,或多或少都有这么一点点的收集癖 ~ 发现好的图片,发现好的书籍,发现各种能存放在电脑上的东西,都喜欢把它批量的爬取下来。 然后放着,是的,就这么放着.......然后慢慢的遗忘掉.....All IT eBooks多线程-爬虫分析打开网址 http://www.allitebooks.com/ 发现特别清晰的小页面,一看就好爬在点击一本图书进入,发现下载的小链接也很明显的展示在了我们面前,小激动一把,这么清晰无广告的网站不多见了。

1.All IT eBooks多线程-写在前面

对一个爬虫爱好者来说,或多或少都有这么一点点的收集癖 ~ 发现好的图片,发现好的书籍,发现各种能存放在电脑上的东西,都喜欢把它批量的爬取下来。 然后放着,是的,就这么放着.......然后慢慢的遗忘掉.....

6af89bc8gw1f8sw1x8sumg205m05k74f

All IT eBooks多线程-爬虫分析

打开网址 http://www.allitebooks.com/ 发现特别清晰的小页面,一看就好爬
image

在点击一本图书进入,发现下载的小链接也很明显的展示在了我们面前,小激动一把,这么清晰无广告的网站不多见了。
image

All IT eBooks多线程-撸代码

这次我采用了一个新的模块 requests-html 这个模块的作者之前开发了一款 requests,你应该非常熟悉了,线程控制采用的 queue
安装 requests-html 模块


pip install requests-html

关于这个模块的使用,你只需要使用搜索引擎搜索一下这个模块名称,那文章也是很多滴,作为能学到这篇博客的你来说,是很简单的拉~

我们编写一下核心的内容

from requests_html import HTMLSession
from queue import Queue
import requests
import random

import threading
CARWL_EXIT = False
DOWN_EXIT = False

#####
# 其他代码
####
if __name__ == '__main__':

    page_queue = Queue(5)
    for i in range(1,6):
        page_queue.put(i)  # 把页码存储到page_queue里面

    # 采集结果
    data_queue = Queue()

    # 记录线程列表
    thread_crawl = []
    # 每次开启5个线程
    craw_list = ["采集线程1号","采集线程2号","采集线程3号","采集线程4号","采集线程5号"]

    for thread_name in craw_list:
        c_thread = ThreadCrawl(thread_name,page_queue,data_queue)
        c_thread.start()
        thread_crawl.append(c_thread)

    while not page_queue.empty():
        pass

    # 如果page_queue为空,采集线程退出循环
    CARWL_EXIT = True
    for thread in thread_crawl:
        thread.join()
        print("抓取线程结束")

上面就是爬取图书详情页面的线程了,我开启了5个线程爬取,页码也只爬取了5 页,如果你需要更多的,只需要修改

    page_queue = Queue(5)
    for i in range(1,6):
        page_queue.put(i)  # 把页码存储到page_queue里面

下面我们把 ThreadCrawl 类编写完毕

session = HTMLSession()

# 这个地方是 User_Agents 以后我把他配置到服务器上面,就可以远程获取了  这个列表里面有很多项,你自己去源码里面找吧
USER_AGENTS = [
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/535.20 (KHTML, like Gecko) Chrome/19.0.1036.7 Safari/535.20"
]
# 获取图书下载链接的线程类
class ThreadCrawl(threading.Thread):
    # 构造函数
    def __init__(self,thread_name,page_queue,data_queue):

        super(ThreadCrawl,self).__init__()
        self.thread_name = thread_name
        self.page_queue = page_queue
        self.data_queue = data_queue
        self.page_url = "http://www.allitebooks.com/page/{}"   #URL拼接模板

    def run(self):
        print(self.thread_name+" 启动*********")

        while not CARWL_EXIT:
            try:
                page = self.page_queue.get(block=False)
                page_url = self.page_url.format(page)   # 拼接URL操作
                self.get_list(page_url)   # 分析页面链接 

            except Exception as e:
                print(e)
                break


    # 获取当前列表页所有图书链接
    def get_list(self,url):
        try:
            response = session.get(url)
        except Exception as e:
            print(e)
            raise e

        all_link = response.html.find('.entry-title>a') # 获取页面所有图书详情链接

        for link in all_link:
            self.get_book_url(link.attrs['href'])   # 获取图书链接

    # 获取图书下载链接
    def get_book_url(self,url):
        try:
            response = session.get(url)

        except Exception as e:
            print(e)
            raise e

        download_url = response.html.find('.download-links a', first=True)

        if download_url is not None: # 如果下载链接存在,那么继续下面的爬取工作
            link = download_url.attrs['href']
            self.data_queue.put(link)   # 把图书下载地址 存储到 data_queue里面,准备后面的下载
            print("抓取到{}".format(link))

上述代码一个非常重要的内容就是把图书的下载链接存储到了data_queue 里面,这些数据 在另一个下载线程里面是最基本的数据。

下面开始 编写图书下载的类和方法。

我开启了4个线程,操作和上面的非常类似

class ThreadDown(threading.Thread):
    def __init__(self, thread_name, data_queue):
        super(ThreadDown, self).__init__()
        self.thread_name = thread_name
        self.data_queue = data_queue

    def run(self):
        print(self.thread_name + ' 启动************')
        while not DOWN_EXIT:
            try:
                book_link = self.data_queue.get(block=False)
                self.download(book_link)
            except Exception as e:
                pass

    def download(self,url):
        # 随机浏览器User-Agent
        headers = {"User-Agent":random.choice(USER_AGENTS)}
        # 获取文件名字
        filename = url.split('/')[-1]
        # 如果url里面包含pdf
        if '.pdf' in url or '.epub' in url:
            file = 'book/'+filename  # 文件路径已经写死,请在跟目录先创建好一个book文件夹
            with open(file,'wb') as f:  # 开始二进制写文件
                print("正在下载 {}".format(filename))
                response = requests.get(url,stream=True,headers=headers)
                # 获取文件大小
                totle_length = response.headers.get("content-length")
                # 如果文件大小不存在,则直接写入返回的文本
                if totle_length is None:
                    f.write(response.content)
                else:
                    for data in response.iter_content(chunk_size=4096):
                        f.write(data)
                    else:
                        f.close()

                print("{}下载完成".format(filename))

if __name__ == '__main__': 

# 其他代码在上面
    thread_image = []
    image_list = ['下载线程1号', '下载线程2号', '下载线程3号', '下载线程4号']
    for thread_name in image_list:
        d_thread = ThreadDown(thread_name, data_queue)
        d_thread.start()
        thread_image.append(d_thread)

    while not data_queue.empty():
        pass

    DOWN_EXIT = True
    for thread in thread_image:
        thread.join()
        print("下载线程结束")

如果你把我上面的代码都组合完毕,那么应该可以很快速的去爬取图书了,当然这些图书都是英文了,下载下来你能不能读....... 我就不知道了。

image

相关文章
|
7天前
|
安全 数据处理 开发者
Python中的多线程编程:从入门到精通
本文将深入探讨Python中的多线程编程,包括其基本原理、应用场景、实现方法以及常见问题和解决方案。通过本文的学习,读者将对Python多线程编程有一个全面的认识,能够在实际项目中灵活运用。
|
1天前
|
Java Unix 调度
python多线程!
本文介绍了线程的基本概念、多线程技术、线程的创建与管理、线程间的通信与同步机制,以及线程池和队列模块的使用。文章详细讲解了如何使用 `_thread` 和 `threading` 模块创建和管理线程,介绍了线程锁 `Lock` 的作用和使用方法,解决了多线程环境下的数据共享问题。此外,还介绍了 `Timer` 定时器和 `ThreadPoolExecutor` 线程池的使用,最后通过一个具体的案例展示了如何使用多线程爬取电影票房数据。文章还对比了进程和线程的优缺点,并讨论了计算密集型和IO密集型任务的适用场景。
13 4
|
1天前
|
数据采集 存储 机器学习/深度学习
构建高效的Python网络爬虫
【10月更文挑战第25天】本文将引导你通过Python编程语言实现一个高效网络爬虫。我们将从基础的爬虫概念出发,逐步讲解如何利用Python强大的库和框架来爬取、解析网页数据,以及存储和管理这些数据。文章旨在为初学者提供一个清晰的爬虫开发路径,同时为有经验的开发者提供一些高级技巧。
5 1
|
4天前
|
数据采集 存储 数据库
Python中实现简单爬虫的入门指南
【10月更文挑战第22天】本文将带你进入Python爬虫的世界,从基础概念到实战操作,一步步指导你如何使用Python编写一个简单的网络爬虫。我们将不展示代码示例,而是通过详细的步骤描述和逻辑讲解,帮助你理解爬虫的工作原理和开发过程。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你打开一扇通往数据收集新世界的大门。
|
4天前
|
数据采集 Python
python爬虫抓取91处理网
本人是个爬虫小萌新,看了网上教程学着做爬虫爬取91处理网www.91chuli.com,如果有什么问题请大佬们反馈,谢谢。
20 4
|
8天前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
15天前
|
Java Python
python知识点100篇系列(16)-python中如何获取线程的返回值
【10月更文挑战第3天】本文介绍了两种在Python中实现多线程并获取返回值的方法。第一种是通过自定义线程类继承`Thread`类,重写`run`和`join`方法来实现;第二种则是利用`concurrent.futures`库,通过`ThreadPoolExecutor`管理线程池,简化了线程管理和结果获取的过程,推荐使用。示例代码展示了这两种方法的具体实现方式。
python知识点100篇系列(16)-python中如何获取线程的返回值
|
19天前
|
数据采集 Web App开发 数据可视化
Python爬虫教程:Selenium可视化爬虫的快速入门
Python爬虫教程:Selenium可视化爬虫的快速入门
|
18天前
|
网络协议 安全 Java
难懂,误点!将多线程技术应用于Python的异步事件循环
难懂,误点!将多线程技术应用于Python的异步事件循环
46 0
|
4月前
|
安全 Python
告别低效编程!Python线程与进程并发技术详解,让你的代码飞起来!
【7月更文挑战第9天】Python并发编程提升效率:**理解并发与并行,线程借助`threading`模块处理IO密集型任务,受限于GIL;进程用`multiprocessing`实现并行,绕过GIL限制。示例展示线程和进程创建及同步。选择合适模型,注意线程安全,利用多核,优化性能,实现高效并发编程。
68 3