HanLP vs LTP 分词功能测试

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介:  文章摘自github,本次测试选用 HanLP 1.6.0 , LTP 3.4.0 测试思路 使用同一份语料训练两个分词库,同一份测试数据测试两个分词库的性能。 语料库选取1998年01月的人民日报语料库。

 

文章摘自github,本次测试选用 HanLP 1.6.0 , LTP 3.4.0

 

测试思路

 

使用同一份语料训练两个分词库,同一份测试数据测试两个分词库的性能。

 

语料库选取1998年01月的人民日报语料库。199801人民日报语料

 

该词库带有词性标注,为了遵循LTP的训练数据集格式,需要处理掉词性标注。

 

测试数据选择SIGHan2005提供的开放测试集。

 

SIGHan2005的使用可以参见其附带的readme。

 

HanLP

 

java -cp libs/hanlp-1.6.0.jar com.hankcs.hanlp.model.perceptron.Main -task CWS -train -reference ../OpenCorpus/pku98/199801.txt -model cws.bin

 

mkdir -p data/model/perceptron/pku199801

 

mv -f cws.bin data/model/perceptron/pku199801/cws.bin

 

默认情况下,训练的迭代次数为5。

 

修改 src/main/resouces 文件:

 

root=../test-hanlp-ltp

 

打包命令:

 

gradle clean build

 

SIGHan2005的MSR测试集

 

执行命令:

 

java -cp build/libs/test-hanlp-ltp-1.0-SNAPSHOT.jar  com.zongwu33.test.TestForSIGHan2005 ../NLP/icwb2-data/testing/msr_test.utf8    segment-msr-result.txt

将分词的结果生成到segment-msr-result.txt文件里。 利用SIGHan2005的脚本生成分数:

 

perl ../NLP/icwb2-data/scripts/score ../NLP/icwb2-data/gold/msr_training_words.utf8 \

    ../NLP/icwb2-data/gold/msr_test_gold.utf8 segment-msr-result.txt > score-msr.ut8

可以得到 HanLP在MSR数据集上的测试结果:

 

=== TOTAL TRUE WORDS RECALL: 0.870

=== TOTAL TEST WORDS PRECISION: 0.848

=== F MEASURE: 0.859

SIGHan2005的PKU测试集

 

java -cp build/libs/test-hanlp-ltp-1.0-SNAPSHOT.jar  com.zongwu33.test.TestForSIGHan2005 ../NLP/icwb2-data/testing/pku_test.utf8  segment-pku-result.txt

perl ../NLP/icwb2-data/scripts/score ../NLP/icwb2-data/gold/pku_training_words.utf8  ../NLP/icwb2-data/gold/pku_test_gold.utf8   segment-pku-result.txt > score-pku.utf8

结果:

 

=== TOTAL TRUE WORDS RECALL: 0.894

=== TOTAL TEST WORDS PRECISION: 0.915

=== F MEASURE: 0.905

Docker安装 LTP

 

LTP

 

生成符合LTP训练格式的训练集文件:

 

java  -cp build/libs/test-hanlp-ltp-1.0-SNAPSHOT.jar  com.zongwu33.test.CreateSimpleCorpus ../OpenCorpus/pku98/199801.txt  simple-199801.txt

simple-199801.txt 即为结果。 训练集 和开发集都指定为这个文件:

 

../LTP/ltp-3.4.0/tools/train/otcws learn  --model model-test --reference simple-199801.txt --development simple-199801.txt  --max-iter  5

SIGHan2005的MSR测试集

 

测试:

 

../LTP/ltp-3.4.0/tools/train/otcws test  --model model-test  --input /data/testLTP/icwb2-data/testing/msr_test.utf8  > msr_result.txt

利用SIGHan2005的脚本生成分数:

 

perl icwb2-data/scripts/score icwb2-data/gold/msr_training_words.utf8 \

    icwb2-data/gold/msr_test_gold.utf8 msr_result.txt > ltp-msr-score.utf8

查看ltp-msr-score.utf8 :

 

=== TOTAL TRUE WORDS RECALL: 0.886

=== TOTAL TEST WORDS PRECISION: 0.854

=== F MEASURE: 0.870

SIGHan2005的PKU测试集

 

../LTP/ltp-3.4.0/tools/train/otcws test  --model model-test  --input /data/testLTP/icwb2-data/testing/pku_test.utf8  > pku_result.txt

perl icwb2-data/scripts/score icwb2-data/gold/pku_training_words.utf8  \

    icwb2-data/gold/pku_test_gold.utf8  pku_result.txt > ltp-pku-score.ut8

=== TOTAL TRUE WORDS RECALL: 0.928

=== TOTAL TEST WORDS PRECISION: 0.939

=== F MEASURE: 0.934

对比

 

MSR测试集:

 


230b6a40680b7ea9280c9ec722511c831e65412c

 

性能测试

 

阿里云ECS机器配置:

 

机器配置:Intel Xeon CPU *4 2.50GHz,内存16G

 

测试数据集 20M的网络小说,约140315句(不含空行)。

 

HanLP

 

java -cp test-hanlp-ltp-1.0-SNAPSHOT.jar com.zongwu33.test.PerformanceTest  ../NLP/strict-utf8-booken.txt  

init model: 313 ms

total time:15677 ms

total num:140315

需要15.677 s,可以计算得到处理速度 1375k/s 。

 

LTP

 

 

../LTP/ltp-3.4.0/tools/train/otcws test  --model model-test  --input  strict-utf8-booken.txt  > /dev/null

 

[INFO] 2018-03-26 17:04:19 ||| ltp segmentor, testing ...

[INFO] 2018-03-26 17:04:19 report: input file = strict-utf8-booken.txt

[INFO] 2018-03-26 17:04:19 report: model file = model-test

[INFO] 2018-03-26 17:04:19 report: evaluate = false

[INFO] 2018-03-26 17:04:19 report: sequence probability = false

[INFO] 2018-03-26 17:04:19 report: marginal probability = false

[INFO] 2018-03-26 17:04:19 report: number of labels = 4

[INFO] 2018-03-26 17:04:19 report: number of features = 491820

[INFO] 2018-03-26 17:04:19 report: number of dimension = 1967296

[INFO] 2018-03-26 17:05:13 Elapsed time 53.680000

需要53s。处理速度389k/s。

 

对比


33155d2c5d65d8c1e769f2bc0d7ac87576a0d00f

 

开源协议

 

Apache License Version 2.0

相关文章
|
3月前
|
机器学习/深度学习 自然语言处理 Java
HanLP — 词性标注
HanLP — 词性标注
32 1
|
6月前
|
自然语言处理 Python
python实现分词器
python实现分词器
|
自然语言处理
pkuseg 和 jieba 分词对比测试,结果出乎意料...
pkuseg 和 jieba 分词对比测试,结果出乎意料...
|
自然语言处理 Java Python
自然语言处理hanlp------10HanLP的词典分词实现
自然语言处理hanlp------10HanLP的词典分词实现
自然语言处理hanlp------10HanLP的词典分词实现
|
机器学习/深度学习 人工智能 自然语言处理
中文分词工具 MiNLP-Tokenizer
中文分词工具 MiNLP-Tokenizer
420 0
中文分词工具 MiNLP-Tokenizer
|
机器学习/深度学习 自然语言处理 算法
Hanlp中使用纯JAVA实现CRF分词
与基于隐马尔可夫模型的最短路径分词、N-最短路径分词相比,基于条件随机场(CRF)的分词对未登录词有更好的支持。本文(HanLP)使用纯Java实现CRF模型的读取与维特比后向解码,内部特征函数采用 双数组Trie树(DoubleArrayTrie)储存,得到了一个高性能的中文分词器。
4770 1
|
自然语言处理
HanLP分词工具中的ViterbiSegment分词流程
本篇文章将重点讲解HanLP的ViterbiSegment分词器类,而不涉及感知机和条件随机场分词器,也不涉及基于字的分词器。因为这些分词器都不是我们在实践中常用的,而且ViterbiSegment也是作者直接封装到HanLP类中的分词器,作者也推荐使用该分词器,同时文本分类包以及其他一些自然语言处理任务包中的分词器也都间接使用了ViterbiSegment分词器。
1121 0
|
自然语言处理
Ansj与hanlp分词工具对比
一、Ansj1、利用DicAnalysis可以自定义词库: 2、但是自定义词库存在局限性,导致有些情况无效:比如:“不好用“的正常分词结果:“不好,用”。 (1)当自定义词库”好用“时,词库无效,分词结果不变。
1124 0
HanLP-分类模块的分词器介绍
最近发现一个很勤快的大神在分享他的一些实操经验,看了一些他自己关于hanlp方面的文章,写的挺好的!转载过来分享给大家!以下为分享原文(无意义的内容已经做了删除)如下图所示,HanLP的分类模块中单独封装了适用分类的分词器,当然这些分词器都是对HanLP提供的分词器的封装。
5979 0
|
自然语言处理
HanLP-实词分词器详解
在进行文本分类(非情感分类)时,我们经常只保留实词(名、动、形)等词,为了文本分类的分词方便,HanLP专门提供了实词分词器类NotionalTokenizer,同时在分类数据集加载处理时,默认使用了NotionalTokenizer分词器。
1821 0