EM 简单例子

简介: 一 理论: 简版:猜(E-step),反思(M-step),重复; 啰嗦版: 你知道一些东西(观察的到的数据), 你不知道一些东西(观察不到的),你很好奇,想知道点那些不了解的东西。怎么办呢,你就根据一些假设(parameter)先猜(E-step),把那些不知道的东西都猜出来,假装你全都知道了; 然后有了这些猜出来的数据,你反思一下,更新一下你的假设(parameter)



理论:
简版:猜(E-step),反思(M-step),重复;
啰嗦版:
你知道一些东西(观察的到的数据), 你不知道一些东西(观察不到的),你很好奇,想知道点那些不了解的东西。怎么办呢,你就根据一些假设(parameter)先猜(E-step),把那些不知道的东西都猜出来,假装你全都知道了; 然后有了这些猜出来的数据,你反思一下,更新一下你的假设(parameter), 让你观察到的数据更加可能(Maximize likelihood; M-stemp); 然后再猜,在反思,最后,你就得到了一个可以解释整个数据的假设了。

1. 注意,你猜的时候,要尽可能的猜遍所有情况,然后求期望(Expected);就是你不能仅仅猜一个个例,而是要猜出来整个宇宙;
2. 为什么要猜,因为反思的时候,知道全部的东西比较好。(就是P(X,Z)要比P(X)好优化一些。Z是hidden states)
3. 最后你得到什么了?你得到了一个可以解释数据的假设,可能有好多假设都能解释数据,可能别的假设更好。不过没关系,有总比没有强,知足吧。(你陷入到local minimum了)
====
实践:

背景:公司有很多领导=[A总,刘总,C总],同时有很多漂亮的女职员=[小甲,小章,小乙]。(请勿对号入座)你迫切的怀疑这些老总跟这些女职员有问题。为了科学的验证你的猜想,你进行了细致的观察。于是,

观察数据:
1)A总,小甲,小乙一起出门了;
2)刘总,小甲,小章一起出门了;
3)刘总,小章,小乙一起出门了;
4)C总,小乙一起出门了;

收集到了数据,你开始了神秘的EM计算:
初始化,你觉得三个老总一样帅,一样有钱,三个美女一样漂亮,每个人都可能跟每个人有关系。所以,每个老总跟每个女职员“有问题”的概率都是1/3;

这样,(E step)
1) A总跟小甲出去过了 1/2 * 1/3 = 1/6 次,跟小乙也出去了1/6次;(所谓的fractional count)
2)刘总跟小甲,小章也都出去了1/6次
3)刘总跟小乙,小章又出去了1/6次
4)C总跟小乙出去了1/3次

总计,A总跟小甲出去了1/6次,跟小乙也出去了1/6次 ; 刘总跟小甲,小乙出去了1/6次,跟小章出去了1/3次;C总跟小章出去了1/3次;

你开始跟新你的八卦了(M step),
A总跟小甲,小乙有问题的概率都是1/6 / (1/6 + 1/6) = 1/2;
刘总跟小甲,小乙有问题的概率是1/6 / (1/6+1/6+1/6+1/6) = 1/4; 跟小章有问题的概率是(1/6+1/6)/(1/6 * 4) = 1/2;
C总跟小乙有问题的概率是 1。

然后,你有开始根据最新的概率计算了;(E-step)
1)A总跟小甲出去了 1/2 * 1/2 = 1/4 次,跟小乙也出去 1/4 次;
2)刘总跟小甲出去了1/2 * 1/4 = 1/12 次, 跟小章出去了 1/2 * 1/2 = 1/4 次;
3)刘总跟小乙出去了1/2 * 1/4 = 1/12 次, 跟小章又出去了 1/2 * 1/2 = 1/4 次;
4)C总跟小乙出去了1次;

重新反思你的八卦(M-step):
A总跟小甲,小乙有问题的概率都是1/4/ (1/4 + 1/4) = 1/2;
B总跟小甲,小乙是 1/12 / (1/12 + 1/4 + 1/4 + 1/12) = 1/8 ; 跟小章是 3/4 ;
C总跟小乙的概率是1。

你继续计算,反思,总之,最后,你得到了真相!


越简单越直观的往往越震撼。

EM算法是个神奇的东西,
这次将利用它来解决简单的句子对齐问题,并得到双语翻译概率表


假设语料库为:
I laugh  我 笑
laugh loudly 大声地 笑

那么有英语词汇表}{I,laugh,loudly}
以及中文词汇表{我,笑,大声地}

最开始,我们并没有任何关于词汇间如何翻译的信息(也就是说,锅看不懂中文,更看不懂英文)
那么:
P(我|I)=1/3      P(笑|I)=1/3     P(大声地|I)=1/3
P(我|laugh)=1/3  P(笑|laugh)=1/3  P(大声地|laugh)=1/3
P(我|loudly)=1/3  P(笑|loudly)=1/3  P(大声地|loudly)=1/3

对于
I laugh  我 笑
laugh loudly 大声地 笑
有2种对齐方式:顺序(I对应我,laugh对应笑),反序(I对应笑,laugh对应我)
这样
P(顺序,我 笑|I laugh)= P(我|I)   P(笑|laugh)=1/3*1/3=1/9
P(反序,我 笑|I laugh)= P(笑|I)   P(我|laugh)=1/3*1/3=1/9
规则化后,有:
P(顺序,我 笑|I laugh)=1/2
P(反序,我 笑|I laugh) =1/2
同理,对于第二个句子对
P(顺序, 大声地 笑  | laughloudly  )=1/2
P(反序, 大声地 笑  | laughloudly  =1/2

貌似到此为止,我们什么都没干
因为对于  I laugh 我 笑来说,计算机认为顺序,反序对齐都一样,但作为我们人来说,由于对这两门语言有背景知识,可以一下就说,这明显是顺序对齐嘛。
同样,对于第二个句子对,也可以马上回答肯定是反序对齐。

不急,继续下去。
现在重新计算词汇对译概率
可得:
P(我|I)=1/2      P(笑|I)=1/2      P(大声地|I)=0
这个概率的得出步骤:
考虑 (我 I)这一对,他出现在( I laugh 我 笑 的)的顺序对齐中,而其概率为1/2(其实称为权重更确切)
(笑|I)出现在 Ilaugh  我 笑 的)的反序对齐中,而其概率为1/2
(大声地|I)没有出现。

所以,将上述步骤所得概率归一化后,
可得:
P(我|I)=1/2      P(笑|I)=1/2      P(大声地|I)=0
P(我|laugh)=1/4  P(笑|laugh)=1/2  P(大声地|laugh)=1/4
P(我|loudly)=0   P(笑|loudly)=1/2  P(大声地|loudly)=1/2

渐渐的,似乎这概率意思着laugh可以被翻译为笑。。。

再接着,重新计算各句对顺序反序概率
P(顺序,我 笑|I laugh)= P(我|I)   P(笑|laugh)=1/2*1/2=1/4
P(反序,我 笑|I laugh)= P(笑|I)   P(我|laugh)=1/2*1/4=1/8
P(顺序,  大声地 笑  |  laughloudly  )=1/8
P(反序,  大声地 笑  |  laughloudly  =1/4

归一后,
P(顺序,我 笑|I laugh)=2/3
P(反序,我 笑|I laugh)= 1/3
P(顺序,  大声地 笑  |  laughloudly  )= 1/3
P(反序,  大声地 笑  |  laughloudly  = 2/3

也就是说,现在计算机相信,第一个句子对更倾向于顺序对齐,第二个句子对更倾向于反序对齐,这与我们的直觉相符合。


目录
相关文章
|
5月前
|
前端开发
css中px和em的区别
css中px和em的区别
70 0
|
7月前
|
搜索推荐
title 与 h1 的区别、b 与 strong 的区别、i 与 em 的区别?
title 与 h1 的区别、b 与 strong 的区别、i 与 em 的区别?
|
7月前
|
前端开发 UED 开发者
CSS基础-属性值单位:px, em, rem, %
【6月更文挑战第7天】本文探讨了CSS中四种关键的尺寸单位:像素(px)、相对单位(em)、rem和百分比(%)。px提供稳定显示但不适用于响应式设计;em根据上下文动态调整,但嵌套使用可能导致计算复杂;rem简化了嵌套计算,适合作为响应式设计的选择;%用于流体布局,但可能在复杂结构中引起不稳定。理解各单位特性并结合现代布局技术,能提升网页布局的美观性和用户体验。
95 3
|
8月前
使用百分比和EM组合
使用百分比和EM组合。
32 1
|
编解码
1rem、1em、1vh、1px各自代表的含义?
1rem、1em、1vh、1px各自代表的含义?
|
编解码 前端开发
css中单位px、pt、em和rem的区别
css中单位px、pt、em和rem的区别
|
Web App开发 编解码 前端开发
什么是浏览器内核?px、em 和 rem 的区别?new 操作符具体干了什么?
通常所谓的浏览器内核也就是浏览器所采用的渲染引擎,渲染引擎决定了浏览器如何显示网页的内容以及页面的格式信息。
|
前端开发
细说 rem 与 em
细说 rem 与 em
细说 rem 与 em
|
前端开发
css calc() 的使用方法,里面包含bug
在做后台管理系统的时候吗,我们通常会发现,左侧的菜单需要出去顶部后自动布满整个屏幕,并且加上背景颜色。但是实现起来有的时候却是挺难受的。所以在这里我们就是用calc() 来使用。calc() 是css 里面的一个计算长度的公式。里面可以进行加减乘除。 但是用的不好的话,会发现没有作用。
css calc() 的使用方法,里面包含bug
|
前端开发
【CSS】有意思的BFC:Block Formatting Context(块格式化上下文)!🤡
前言 大家好,我是HoMeTown,今天想聊一聊CSS中的BFC,很多朋友应该都听过这个名词,搞懂BFC可以让我们理解CSS中一些很诡异的地方,话不多说,直奔主题!
62 0