语音情感计算理论基础

简介: 持续更新情感计算相关

1.语音情感计算中情感的建模方法有哪些?有什么区别?情感计算主要应用于哪些领域?

  1. 支持向量机(SVM)、隐马尔可夫模型(HMM)、人工神经网路(NN)等。
    • SVM:基音+SVM算法=统计特征→识别语音状态;
    • HMM:输入特征矢量序列+训练=统计信号→识别语音状态;
    • NN:多层神经网路+训练=模拟人脑组织→识别语音状态。
  2. 虚拟人物、身份验证、智能用户界面、交互式感性图像检索、多功能机、语音识别、面部识别、军用可穿戴计算机等等。

2.列举三种以上的用于语音情感计算的声学特征,并解释其物理含义。

声学特征:

  • 音色。发音体形状、质地、构造不同,决定了音色的不同。
  • 音调。发音体声音频率的高低。
  • 音强。发音体振动的幅度特征。
  • 音长。发音体振动延续的时间特征。

语句特征:

  • 基频。基音的频率,决定了音高。在不同情感状态说,说同一段话,基频是不同的。一般研究基频的峰值、均值、方差等特征。
  • 低于250HZ的谱能量。根据parseval定理,信号傅氏变换模平方被称为谱能量。带有情绪的状态下谱能量和低于250HZ的谱能量时的存在一些规律。
  • 语速。讲一个语句的速度。不同情绪下的语速有规律性差异。
  • 能量。生气和高兴时能量高,其次平静,悲伤最低。
相关文章
|
10月前
情感理论模型
情感理论模型
410 0
Emotion-LLaMA:用 AI 读懂、听懂、看懂情绪,精准捕捉文本、音频和视频中的复杂情绪
Emotion-LLaMA 是一款多模态情绪识别与推理模型,融合音频、视觉和文本输入,通过特定情绪编码器整合信息,广泛应用于人机交互、教育、心理健康等领域。
159 11
Emotion-LLaMA:用 AI 读懂、听懂、看懂情绪,精准捕捉文本、音频和视频中的复杂情绪
大模型的多样性:从语言处理到多模态智能
本文介绍了大模型在多个领域的应用,包括自然语言处理(如Transformer、GPT、BERT、T5)、计算机视觉(如CNN、ViT、GAN)、多模态智能(如CLIP、DALL-E)、语音识别与合成(如Wav2Vec、Tacotron)以及强化学习(如AlphaGo、PPO)。这些模型展现了卓越的性能,推动了人工智能技术的发展。
98 1
语音情感基座模型emotion6vec 问题之什么是表征可视化,在这项研究中如何应用
语音情感基座模型emotion6vec 问题之什么是表征可视化,在这项研究中如何应用
AI让失语者重新说话!纽约大学发布全新神经-语音解码器
【5月更文挑战第19天】纽约大学研发的神经-语音解码器,结合深度学习与语音合成,为失语者带来新希望。此脑机接口技术能将大脑神经信号转化为语音参数,再通过合成器转为可听语音。使用癫痫患者的数据进行训练,解码器已成功重现语音,尽管质量有待提升。该技术有望革新沟通方式,但也面临数据复杂性、隐私保护及社会接受度等挑战。[论文链接](https://www.nature.com/articles/s42256-024-00824-8)
104 5
ZeroSwot:零数据训练,成功突破语音翻译难题
【2月更文挑战第16天】ZeroSwot:零数据训练,成功突破语音翻译难题
88 1
ZeroSwot:零数据训练,成功突破语音翻译难题
ONE-PEACE:探索通往无限模态的通用表征模型
过去几年里,表征模型在自然语言处理、计算机视觉、语音处理等领域取得了巨大的成功。经过大量数据学习的表征模型,不仅可以在各种下游任务上取得良好的效果,还可以作为大规模语言模型(LLM)的基座模型,为LLM提供多模态理解能力。随着多模态技术的发展,尤其CLIP[1]之后大家都意识到一个好的多模态表征模型在很多单模态任务上都会发挥着至关重要的基础模型的作用。学习了大量模态alignment的数据之后的模型逐渐在学会去理解各个模态和模态间蕴含的知识,甚至通过对大量模态的学习促进对其它模态的理解。
22067 7
语音识别(ASR)基础介绍第二篇——万金油特征MFCC
上一章提到了整个发声与拾音及存储的原理。但是在了解ASR的过程中,发现基本上遇到的资料都避不开MFCC特征。   整个ASR的处理流程大致可以分为下图: 左侧是经典的处理流程,右侧是近期流行的流程。发生的变化是,将语言模型以下的部分变成端到端的了。 我们将语言模型以下的部分统一看成是声学模型就好。  而MFCC主要用在左侧的处理流程中,即“特征处
7259 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等