python人工智能机器学习工具书籍: scikit-learn Cookbook 2nd Edition

简介: 简介本书包括对机器学习中常见问题和不常见问题的演练和解决方案,以及如何利用scikit-learn有效地执行各种机器学习任务。第二版首先介绍评估数据统计属性的方法,并为机器学习建模生成合成数据。当您逐步完成这些章节时,您会遇到一些食谱,它们将教您实施数据预处理,线性回归,逻辑回归,KNN,NaïveBayes,分类,决策树,合奏等技术。

简介

本书包括对机器学习中常见问题和不常见问题的演练和解决方案,以及如何利用scikit-learn有效地执行各种机器学习任务。

第二版首先介绍评估数据统计属性的方法,并为机器学习建模生成合成数据。当您逐步完成这些章节时,您会遇到一些食谱,它们将教您实施数据预处理,线性回归,逻辑回归,KNN,NaïveBayes,分类,决策树,合奏等技术。

此外,您将学习使用多级分类,交叉验证,模型评估来优化您的模型,并深入学习使用scikit-learn实现深度学习。

除了涵盖模型部分,API和分类器,回归器和估算器等新功能的增强功能外,本书还包含评估和微调模型性能的方法。在本书的最后,您将探索用于Python的scikit-learn提供的众多功能,以解决您遇到的任何机器学习问题。

图片.png

参考资料

内容

1:高性能机器学习 - NUMPY
2:预模型工作流程和预处理
3:减少尺寸
4:SCIKIT-LEARN线性模型
5:线性模型 - 逻辑回归
6:具有距离度量的模型
7:交叉验证和后模型工作流程
8:支持矢量机
9:树算法和插件
10:具有SCIKIT-LEARN的文本和多层分类
11:神经网络
12:创建简单的估计器

你将学到什么

  • 使用scikit-learn在几分钟内构建预测模型
  • 理解分类和回归之间的差异和关系,两种类型的监督学习。
  • 使用距离度量来预测聚类,这是一种无监督学习
  • 找到与Nearest Neighbors具有相似特征的点。
  • 使用自动化和交叉验证来查找最佳模型,并专注于数据产品
  • 选择众多最佳算法或在整体中一起使用它们。
  • 使用sklearn的简单语法创建自己的估算器
  • 探索scikit-learn中提供的前馈神经网络

作者

  • 朱利安.阿维拉

Julian Avila是金融和计算机视觉领域的程序员和数据科学家。他毕业于麻省理工学院(MIT)数学专业,研究量子力学计算,涉及物理,数学和计算机科学。在麻省理工学院期间,朱利安首先通过与CSAIL实验室的朋友讨论,获得古典和弗拉门戈吉他,机器学习和人工智能。

他开始在中学编程,包括游戏和几何艺术动画。他成功地参加了数学和编程,并在麻省理工学院的几个小组工作。 Julian用优雅的Python编写了完整的软件项目,并进行了即时编译。他的一些令人难忘的项目包括大型面部识别系统,用于GPU上的神经网络视频,识别图片中的神经元部分,及股票市场交易程序。

  • 特伦特.豪克
    Trent Hauck是一位在西雅图地区生活和工作的数据科学家。他在堪萨斯州的威奇托长大,并获得了堪萨斯大学的本科和研究生学位。他是“使用pandas How-to,Packt Publishing”这本书的即时数据密集型应用程序的作者,这本书可以帮助您快速掌握pandas和其他相关技术。
相关文章
|
4月前
|
机器学习/深度学习 人工智能 监控
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
本系列文章深入讲解了从Seq2Seq、RNN到Transformer,再到GPT模型的关键技术原理与实现细节,帮助读者全面掌握Transformer及其在NLP中的应用。同时,通过一个房价预测的完整案例,介绍了算法工程师如何利用数据训练模型并解决实际问题,涵盖需求分析、数据收集、模型训练与部署等全流程。文章适合初学者和开发者学习AI基础与实战技能。
523 25
AI 基础知识从0.1到0.2——用“房价预测”入门机器学习全流程
|
6月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
|
8月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
299 7
|
6月前
|
机器学习/深度学习 人工智能 算法
Scikit-learn:Python机器学习的瑞士军刀
想要快速入门机器学习但被复杂算法吓退?本文详解Scikit-learn如何让您无需深厚数学背景也能构建强大AI模型。从数据预处理到模型评估,从垃圾邮件过滤到信用风险评估,通过实用案例和直观图表,带您掌握这把Python机器学习的'瑞士军刀'。无论您是AI新手还是经验丰富的数据科学家,都能从中获取将理论转化为实际应用的关键技巧。了解Scikit-learn与大语言模型的最新集成方式,抢先掌握机器学习的未来发展方向!
934 12
Scikit-learn:Python机器学习的瑞士军刀
|
5月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL消息传递接口的PyG替换
DGL (Deep Graph Learning) 和 PyG (Pytorch Geometric) 是两个主流的图神经网络库,它们在API设计和底层实现上有一定差异,在不同场景下,研究人员会使用不同的依赖库,昇腾NPU对PyG图机器学习库的支持亲和度更高,因此有些时候需要做DGL接口的PyG替换。
|
5月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL图构建接口的PyG替换
本文探讨了在图神经网络中将DGL接口替换为PyG实现的方法,重点以RFdiffusion蛋白质设计模型中的SE3Transformer为例。SE3Transformer通过SE(3)等变性提取三维几何特征,其图构建部分依赖DGL接口。文章详细介绍了两个关键函数的替换:`make_full_graph` 和 `make_topk_graph`。前者构建完全连接图,后者生成k近邻图。通过PyG的高效实现(如`knn_graph`),我们简化了图结构创建过程,并调整边特征处理逻辑以兼容不同框架,从而更好地支持昇腾NPU等硬件环境。此方法为跨库迁移提供了实用参考。
|
6月前
|
数据可视化 Rust 机器学习/深度学习
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
mlop.ai 是首个为国区用户优化的机器学习工具,全栈免费开源,是主流付费解决方案 ClearML/WandB 的开源平替。常规实验追踪的工具经常大幅人为降速,mlop因为底层为Rust代码,能轻松支持高频数据写入。如需更多开发者帮助或企业支持,敬请联系cn@mlop.ai
326 12
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
|
8月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
451 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
276 6

热门文章

最新文章

推荐镜像

更多