[雪峰磁针石博客]pyspark工具机器学习(自然语言处理和推荐系统)2数据处理2

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: 用户定义函数(UDF:User-Defined Functions) UDF广泛用于数据处理,以转换数据帧。 PySpark中有两种类型的UDF:常规UDF和Pandas UDF。 Pandas UDF在速度和处理时间方面更加强大。

图片.png

用户定义函数(UDF:User-Defined Functions)

UDF广泛用于数据处理,以转换数据帧。 PySpark中有两种类型的UDF:常规UDF和Pandas UDF。 Pandas UDF在速度和处理时间方面更加强大。

  • 传统的Python函数

>>> from pyspark.sql.functions import udf
>>> def price_range(brand):
...     prices = {"Samsung":'High Price', "Apple":'High Price', "MI":'Mid Price'}
...     return prices.get('test',"Low Price")
... 
>>> brand_udf=udf(price_range,StringType())
>>> df.withColumn('price_range',brand_udf(df['mobile'])).show(10,False)
+-------+---+----------+------+-------+-----------+                             
|ratings|age|experience|family|mobile |price_range|
+-------+---+----------+------+-------+-----------+
|3      |32 |9.0       |3     |Vivo   |Low Price  |
|3      |27 |13.0      |3     |Apple  |Low Price  |
|4      |22 |2.5       |0     |Samsung|Low Price  |
|4      |37 |16.5      |4     |Apple  |Low Price  |
|5      |27 |9.0       |1     |MI     |Low Price  |
|4      |27 |9.0       |0     |Oppo   |Low Price  |
|5      |37 |23.0      |5     |Vivo   |Low Price  |
|5      |37 |23.0      |5     |Samsung|Low Price  |
|3      |22 |2.5       |0     |Apple  |Low Price  |
|3      |27 |6.0       |0     |MI     |Low Price  |
+-------+---+----------+------+-------+-----------+
only showing top 10 rows

>>> 
  • Lambda函数

>>> age_udf = udf(lambda age: "young" if age <= 30 else "senior", StringType())
>>> df.withColumn("age_group", age_udf(df.age)).show(10,False)
+-------+---+----------+------+-------+---------+
|ratings|age|experience|family|mobile |age_group|
+-------+---+----------+------+-------+---------+
|3      |32 |9.0       |3     |Vivo   |senior   |
|3      |27 |13.0      |3     |Apple  |young    |
|4      |22 |2.5       |0     |Samsung|young    |
|4      |37 |16.5      |4     |Apple  |senior   |
|5      |27 |9.0       |1     |MI     |young    |
|4      |27 |9.0       |0     |Oppo   |young    |
|5      |37 |23.0      |5     |Vivo   |senior   |
|5      |37 |23.0      |5     |Samsung|senior   |
|3      |22 |2.5       |0     |Apple  |young    |
|3      |27 |6.0       |0     |MI     |young    |
+-------+---+----------+------+-------+---------+
only showing top 10 rows

图片.png

  • PandasUDF(矢量化UDF)

有两种类型的Pandas UDF:Scalar和GroupedMap。

Pandas UDF与使用基本UDf非常相似。我们必须首先从PySpark导入pandas_udf并将其应用于要转换的任何特定列。


>>> from pyspark.sql.functions import pandas_udf
>>> def remaining_yrs(age):
...     return (100-age)
... 
>>> from pyspark.sql.types import IntegerType
>>> length_udf = pandas_udf(remaining_yrs, IntegerType())
>>> df.withColumn("yrs_left", length_udf(df['age'])).show(10,False)
/opt/anaconda3/lib/python3.6/site-packages/pyarrow/__init__.py:159: UserWarning: pyarrow.open_stream is deprecated, please use pyarrow.ipc.open_stream
  warnings.warn("pyarrow.open_stream is deprecated, please use "
+-------+---+----------+------+-------+--------+                                
|ratings|age|experience|family|mobile |yrs_left|
+-------+---+----------+------+-------+--------+
|3      |32 |9.0       |3     |Vivo   |68      |
|3      |27 |13.0      |3     |Apple  |73      |
|4      |22 |2.5       |0     |Samsung|78      |
|4      |37 |16.5      |4     |Apple  |63      |
|5      |27 |9.0       |1     |MI     |73      |
|4      |27 |9.0       |0     |Oppo   |73      |
|5      |37 |23.0      |5     |Vivo   |63      |
|5      |37 |23.0      |5     |Samsung|63      |
|3      |22 |2.5       |0     |Apple  |78      |
|3      |27 |6.0       |0     |MI     |73      |
+-------+---+----------+------+-------+--------+
only showing top 10 rows
  • PandasUDF(多列)

>>> def prod(rating,exp):
...     return rating*exp
... 
>>> prod_udf = pandas_udf(prod, DoubleType())
>>> df.withColumn("product",prod_udf(df['ratings'], df['experience'])).show(10,False)
/opt/anaconda3/lib/python3.6/site-packages/pyarrow/__init__.py:159: UserWarning: pyarrow.open_stream is deprecated, please use pyarrow.ipc.open_stream
  warnings.warn("pyarrow.open_stream is deprecated, please use "
+-------+---+----------+------+-------+-------+
|ratings|age|experience|family|mobile |product|
+-------+---+----------+------+-------+-------+
|3      |32 |9.0       |3     |Vivo   |27.0   |
|3      |27 |13.0      |3     |Apple  |39.0   |
|4      |22 |2.5       |0     |Samsung|10.0   |
|4      |37 |16.5      |4     |Apple  |66.0   |
|5      |27 |9.0       |1     |MI     |45.0   |
|4      |27 |9.0       |0     |Oppo   |36.0   |
|5      |37 |23.0      |5     |Vivo   |115.0  |
|5      |37 |23.0      |5     |Samsung|115.0  |
|3      |22 |2.5       |0     |Apple  |7.5    |
|3      |27 |6.0       |0     |MI     |18.0   |
+-------+---+----------+------+-------+-------+
only showing top 10 rows

删除重复值


>>> df.count()
33
>>> df=df.dropDuplicates()
>>> df.count()
26

删除列


>>> df_new=df.drop('mobile')
>>> df_new.show()
+-------+---+----------+------+
|ratings|age|experience|family|
+-------+---+----------+------+
|      3| 32|       9.0|     3|
|      4| 22|       2.5|     0|
|      5| 27|       6.0|     0|
|      4| 22|       6.0|     1|
|      3| 27|       6.0|     0|
|      2| 32|      16.5|     2|
|      4| 27|       9.0|     0|
|      2| 27|       9.0|     2|
|      3| 37|      16.5|     5|
|      4| 27|       6.0|     1|
|      5| 37|      23.0|     5|
|      2| 27|       6.0|     2|
|      4| 37|       6.0|     0|
|      5| 37|      23.0|     5|
|      4| 37|       9.0|     2|
|      5| 37|      13.0|     1|
|      5| 27|       2.5|     0|
|      3| 42|      23.0|     5|
|      5| 22|       2.5|     0|
|      1| 37|      23.0|     5|
+-------+---+----------+------+
only showing top 20 rows

参考资料

写数据

  • CSV

如果我们想以原始csv格式将其保存为单个文件,我们可以在spark中使用coalesce函数。


>>> write_uri = '/home/andrew/test.csv'
>>> df.coalesce(1).write.format("csv").option("header","true").save(write_uri)
  • Parquet

如果数据集很大且涉及很多列,我们可以选择对其进行压缩并将其转换为Parquet文件格式。它减少了数据的整体大小并在处理数据时优化了性能,因为它可以处理所需列的子集而不是整个数据。
我们可以轻松地将数据帧转换并保存为Parquet格式。

注意完整的数据集以及代码可以在本书的GitHub存储库中进行参考,并在onSpark 2.3及更高版本上执行最佳。

图片.png

相关文章
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
探索机器学习中的自然语言处理
在这篇文章中,我们将深入探讨自然语言处理(NLP)在机器学习中的应用。NLP是人工智能的一个分支,它使计算机能够理解、解释和生成人类语言。我们将通过Python编程语言和一些流行的库如NLTK和spaCy来实现一些基本的NLP任务。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息。
|
16天前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
36 8
|
18天前
|
机器学习/深度学习 搜索推荐 算法
在数字化时代,推荐系统成为互联网应用的重要组成部分,通过机器学习技术根据用户兴趣和行为提供个性化推荐,提升用户体验
在数字化时代,推荐系统成为互联网应用的重要组成部分,通过机器学习技术根据用户兴趣和行为提供个性化推荐,提升用户体验。本文探讨了推荐系统的基本原理、常用算法、实现步骤及Python应用,介绍了如何克服数据稀疏性、冷启动等问题,强调了合理选择算法和持续优化的重要性。
52 4
|
26天前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的自然语言处理技术
【10月更文挑战第38天】在本文中,我们将深入探讨自然语言处理(NLP)技术及其在机器学习领域的应用。通过浅显易懂的语言和生动的比喻,我们将揭示NLP技术的奥秘,包括其工作原理、主要任务以及面临的挑战。此外,我们还将分享一些实用的代码示例,帮助您更好地理解和掌握这一技术。无论您是初学者还是有经验的开发者,相信您都能从本文中获得宝贵的知识和启示。
31 3
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
52 1
|
2月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
55 2
|
4月前
|
机器学习/深度学习 自然语言处理 算法
【数据挖掘】百度机器学习-数据挖掘-自然语言处理工程师 历史笔试详解
文章汇总并解析了百度机器学习/数据挖掘工程师/自然语言处理工程师历史笔试题目,覆盖了多分类任务激活函数、TCP首部确认号字段、GMM-HMM模型、朴素贝叶斯模型、SGD随机梯度下降法、随机森林算法、强连通图、红黑树和完全二叉树的高度、最长公共前后缀、冒泡排序比较次数、C4.5属性划分标准、语言模型类型、分词算法、贝叶斯决策理论、样本信息熵、数据降维方法、分箱方法、物理地址计算、分时系统响应时间分析、小顶堆删除调整等多个知识点。
45 1
【数据挖掘】百度机器学习-数据挖掘-自然语言处理工程师 历史笔试详解
|
4月前
|
机器学习/深度学习 数据采集 自然语言处理
打造个性化新闻推荐系统:机器学习与自然语言处理的结合Java中的异常处理:从基础到高级
【8月更文挑战第27天】在信息过载的时代,个性化新闻推荐系统成为解决信息筛选难题的关键工具。本文将深入探讨如何利用机器学习和自然语言处理技术构建一个高效的新闻推荐系统。我们将从理论基础出发,逐步介绍数据预处理、模型选择、特征工程,以及推荐算法的实现,最终通过实际代码示例来展示如何将这些理论应用于实践,以实现精准的个性化内容推荐。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
探索机器学习在自然语言处理中的应用
【8月更文挑战第22天】本文将深入探讨机器学习技术如何革新自然语言处理领域,从基础概念到高级应用,揭示其背后的原理和未来趋势。通过分析机器学习模型如何处理、理解和生成人类语言,我们将展示这一技术如何塑造我们的沟通方式,并讨论它带来的挑战与机遇。
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
探索机器学习中的自然语言处理技术
【7月更文挑战第40天】 随着人工智能的迅猛发展,自然语言处理(NLP)作为机器学习领域的重要分支,正逐渐改变我们与机器的互动方式。本文将深入探讨NLP的核心概念、关键技术以及在现实世界中的应用案例。我们将从基础原理出发,解析NLP如何处理和理解人类语言,并讨论最新的模型和算法如何提升NLP的性能。最后,通过几个实际应用场景的分析,展望NLP在未来可能带来的变革。