[雪峰磁针石博客]pyspark工具机器学习(自然语言处理和推荐系统)2数据处理2

简介: 用户定义函数(UDF:User-Defined Functions) UDF广泛用于数据处理,以转换数据帧。 PySpark中有两种类型的UDF:常规UDF和Pandas UDF。 Pandas UDF在速度和处理时间方面更加强大。

图片.png

用户定义函数(UDF:User-Defined Functions)

UDF广泛用于数据处理,以转换数据帧。 PySpark中有两种类型的UDF:常规UDF和Pandas UDF。 Pandas UDF在速度和处理时间方面更加强大。

  • 传统的Python函数

>>> from pyspark.sql.functions import udf
>>> def price_range(brand):
...     prices = {"Samsung":'High Price', "Apple":'High Price', "MI":'Mid Price'}
...     return prices.get('test',"Low Price")
... 
>>> brand_udf=udf(price_range,StringType())
>>> df.withColumn('price_range',brand_udf(df['mobile'])).show(10,False)
+-------+---+----------+------+-------+-----------+                             
|ratings|age|experience|family|mobile |price_range|
+-------+---+----------+------+-------+-----------+
|3      |32 |9.0       |3     |Vivo   |Low Price  |
|3      |27 |13.0      |3     |Apple  |Low Price  |
|4      |22 |2.5       |0     |Samsung|Low Price  |
|4      |37 |16.5      |4     |Apple  |Low Price  |
|5      |27 |9.0       |1     |MI     |Low Price  |
|4      |27 |9.0       |0     |Oppo   |Low Price  |
|5      |37 |23.0      |5     |Vivo   |Low Price  |
|5      |37 |23.0      |5     |Samsung|Low Price  |
|3      |22 |2.5       |0     |Apple  |Low Price  |
|3      |27 |6.0       |0     |MI     |Low Price  |
+-------+---+----------+------+-------+-----------+
only showing top 10 rows

>>> 
  • Lambda函数

>>> age_udf = udf(lambda age: "young" if age <= 30 else "senior", StringType())
>>> df.withColumn("age_group", age_udf(df.age)).show(10,False)
+-------+---+----------+------+-------+---------+
|ratings|age|experience|family|mobile |age_group|
+-------+---+----------+------+-------+---------+
|3      |32 |9.0       |3     |Vivo   |senior   |
|3      |27 |13.0      |3     |Apple  |young    |
|4      |22 |2.5       |0     |Samsung|young    |
|4      |37 |16.5      |4     |Apple  |senior   |
|5      |27 |9.0       |1     |MI     |young    |
|4      |27 |9.0       |0     |Oppo   |young    |
|5      |37 |23.0      |5     |Vivo   |senior   |
|5      |37 |23.0      |5     |Samsung|senior   |
|3      |22 |2.5       |0     |Apple  |young    |
|3      |27 |6.0       |0     |MI     |young    |
+-------+---+----------+------+-------+---------+
only showing top 10 rows

图片.png

  • PandasUDF(矢量化UDF)

有两种类型的Pandas UDF:Scalar和GroupedMap。

Pandas UDF与使用基本UDf非常相似。我们必须首先从PySpark导入pandas_udf并将其应用于要转换的任何特定列。


>>> from pyspark.sql.functions import pandas_udf
>>> def remaining_yrs(age):
...     return (100-age)
... 
>>> from pyspark.sql.types import IntegerType
>>> length_udf = pandas_udf(remaining_yrs, IntegerType())
>>> df.withColumn("yrs_left", length_udf(df['age'])).show(10,False)
/opt/anaconda3/lib/python3.6/site-packages/pyarrow/__init__.py:159: UserWarning: pyarrow.open_stream is deprecated, please use pyarrow.ipc.open_stream
  warnings.warn("pyarrow.open_stream is deprecated, please use "
+-------+---+----------+------+-------+--------+                                
|ratings|age|experience|family|mobile |yrs_left|
+-------+---+----------+------+-------+--------+
|3      |32 |9.0       |3     |Vivo   |68      |
|3      |27 |13.0      |3     |Apple  |73      |
|4      |22 |2.5       |0     |Samsung|78      |
|4      |37 |16.5      |4     |Apple  |63      |
|5      |27 |9.0       |1     |MI     |73      |
|4      |27 |9.0       |0     |Oppo   |73      |
|5      |37 |23.0      |5     |Vivo   |63      |
|5      |37 |23.0      |5     |Samsung|63      |
|3      |22 |2.5       |0     |Apple  |78      |
|3      |27 |6.0       |0     |MI     |73      |
+-------+---+----------+------+-------+--------+
only showing top 10 rows
  • PandasUDF(多列)

>>> def prod(rating,exp):
...     return rating*exp
... 
>>> prod_udf = pandas_udf(prod, DoubleType())
>>> df.withColumn("product",prod_udf(df['ratings'], df['experience'])).show(10,False)
/opt/anaconda3/lib/python3.6/site-packages/pyarrow/__init__.py:159: UserWarning: pyarrow.open_stream is deprecated, please use pyarrow.ipc.open_stream
  warnings.warn("pyarrow.open_stream is deprecated, please use "
+-------+---+----------+------+-------+-------+
|ratings|age|experience|family|mobile |product|
+-------+---+----------+------+-------+-------+
|3      |32 |9.0       |3     |Vivo   |27.0   |
|3      |27 |13.0      |3     |Apple  |39.0   |
|4      |22 |2.5       |0     |Samsung|10.0   |
|4      |37 |16.5      |4     |Apple  |66.0   |
|5      |27 |9.0       |1     |MI     |45.0   |
|4      |27 |9.0       |0     |Oppo   |36.0   |
|5      |37 |23.0      |5     |Vivo   |115.0  |
|5      |37 |23.0      |5     |Samsung|115.0  |
|3      |22 |2.5       |0     |Apple  |7.5    |
|3      |27 |6.0       |0     |MI     |18.0   |
+-------+---+----------+------+-------+-------+
only showing top 10 rows

删除重复值


>>> df.count()
33
>>> df=df.dropDuplicates()
>>> df.count()
26

删除列


>>> df_new=df.drop('mobile')
>>> df_new.show()
+-------+---+----------+------+
|ratings|age|experience|family|
+-------+---+----------+------+
|      3| 32|       9.0|     3|
|      4| 22|       2.5|     0|
|      5| 27|       6.0|     0|
|      4| 22|       6.0|     1|
|      3| 27|       6.0|     0|
|      2| 32|      16.5|     2|
|      4| 27|       9.0|     0|
|      2| 27|       9.0|     2|
|      3| 37|      16.5|     5|
|      4| 27|       6.0|     1|
|      5| 37|      23.0|     5|
|      2| 27|       6.0|     2|
|      4| 37|       6.0|     0|
|      5| 37|      23.0|     5|
|      4| 37|       9.0|     2|
|      5| 37|      13.0|     1|
|      5| 27|       2.5|     0|
|      3| 42|      23.0|     5|
|      5| 22|       2.5|     0|
|      1| 37|      23.0|     5|
+-------+---+----------+------+
only showing top 20 rows

参考资料

写数据

  • CSV

如果我们想以原始csv格式将其保存为单个文件,我们可以在spark中使用coalesce函数。


>>> write_uri = '/home/andrew/test.csv'
>>> df.coalesce(1).write.format("csv").option("header","true").save(write_uri)
  • Parquet

如果数据集很大且涉及很多列,我们可以选择对其进行压缩并将其转换为Parquet文件格式。它减少了数据的整体大小并在处理数据时优化了性能,因为它可以处理所需列的子集而不是整个数据。
我们可以轻松地将数据帧转换并保存为Parquet格式。

注意完整的数据集以及代码可以在本书的GitHub存储库中进行参考,并在onSpark 2.3及更高版本上执行最佳。

图片.png

相关文章
|
4月前
|
数据采集 机器学习/深度学习 人工智能
31_NLP数据增强:EDA与NLPAug工具
在自然语言处理(NLP)领域,高质量的标注数据是构建高性能模型的基础。然而,获取大量准确标注的数据往往面临成本高昂、耗时漫长、覆盖度不足等挑战。2025年,随着大模型技术的快速发展,数据质量和多样性对模型性能的影响愈发显著。数据增强作为一种有效扩充训练样本的技术手段,正成为解决数据稀缺问题的关键策略。
|
人工智能 自然语言处理 Java
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
FastExcel 是一款基于 Java 的高性能 Excel 处理工具,专注于优化大规模数据处理,提供简洁易用的 API 和流式操作能力,支持从 EasyExcel 无缝迁移。
3328 65
FastExcel:开源的 JAVA 解析 Excel 工具,集成 AI 通过自然语言处理 Excel 文件,完全兼容 EasyExcel
|
12月前
|
人工智能 自然语言处理 数据可视化
Data Formulator:微软开源的数据可视化 AI 工具,通过自然语言交互快速创建复杂的数据图表
Data Formulator 是微软研究院推出的开源 AI 数据可视化工具,结合图形化界面和自然语言输入,帮助用户快速创建复杂的可视化图表。
1196 10
Data Formulator:微软开源的数据可视化 AI 工具,通过自然语言交互快速创建复杂的数据图表
|
12月前
|
存储 人工智能 自然语言处理
ACE++:输入想法就能完成图像创作和编辑!阿里通义推出新版自然语言驱动的图像生成与编辑工具
ACE++ 是阿里巴巴通义实验室推出的升级版图像生成与编辑工具,支持多种任务,如高质量人物肖像生成、主题一致性保持和局部图像编辑。
879 8
|
机器学习/深度学习 搜索推荐 算法
在数字化时代,推荐系统成为互联网应用的重要组成部分,通过机器学习技术根据用户兴趣和行为提供个性化推荐,提升用户体验
在数字化时代,推荐系统成为互联网应用的重要组成部分,通过机器学习技术根据用户兴趣和行为提供个性化推荐,提升用户体验。本文探讨了推荐系统的基本原理、常用算法、实现步骤及Python应用,介绍了如何克服数据稀疏性、冷启动等问题,强调了合理选择算法和持续优化的重要性。
613 4
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
801 1
|
自然语言处理 算法 数据可视化
NLP-基于bertopic工具的新闻文本分析与挖掘
这篇文章介绍了如何使用Bertopic工具进行新闻文本分析与挖掘,包括安装Bertopic库、加载和预处理数据集、建立并训练主题模型、评估模型性能、分类新闻标题、调优聚类结果的详细步骤和方法。
NLP-基于bertopic工具的新闻文本分析与挖掘
|
自然语言处理 算法 数据挖掘
探讨如何利用Python中的NLP工具,从被动收集到主动分析文本数据的过程
【10月更文挑战第11天】本文介绍了自然语言处理(NLP)在文本分析中的应用,从被动收集到主动分析的过程。通过Python代码示例,详细展示了文本预处理、特征提取、情感分析和主题建模等关键技术,帮助读者理解如何有效利用NLP工具进行文本数据分析。
320 2
|
机器学习/深度学习 数据采集 自然语言处理
打造个性化新闻推荐系统:机器学习与自然语言处理的结合Java中的异常处理:从基础到高级
【8月更文挑战第27天】在信息过载的时代,个性化新闻推荐系统成为解决信息筛选难题的关键工具。本文将深入探讨如何利用机器学习和自然语言处理技术构建一个高效的新闻推荐系统。我们将从理论基础出发,逐步介绍数据预处理、模型选择、特征工程,以及推荐算法的实现,最终通过实际代码示例来展示如何将这些理论应用于实践,以实现精准的个性化内容推荐。