MXNet 核心接口

简介: 介绍一些 MXNet 常用的 API
from mxnet import cpu, gpu, nd

Context

Context 是模型的数据放置的环境:

a = nd.array([2, 4], ctx=cpu())
a1 = nd.array([3, 7], ctx=gpu(0))
a.context, a1.context
(cpu(0), gpu(0))

当然,也可以在 CPU 与 GPU 之间进行复制。

a2 = a.copyto(a1)   # 要求 a 与 a1 有相同的 shape
a1 is a2, a2.context
(True, gpu(0))
a1  # a1 被修改了

[2. 4.]
<NDArray 2 @gpu(0)>

为了进行深度复制,需要使用:

a3 = nd.array([3, 9])
a4 = a3.as_in_context(gpu(0))
a3 is a4, a3.context, a4.context
(False, cpu(0), gpu(0))

Symbol

  • Symbol 的基本函数 - 定义计算图
  • Symbol.infer_type: 推导当前 Symbol 所依赖的所有 Symbol 数据类型
  • Symbol.infer_shape: 推导当前 Symbol 所依赖的所有 Symbol 的形状
  • Symbol.list_argments: 列出当前 Symbol 所用到的基本参数名称
  • Symbo.list_outputs: 列出当前 Symbol 的输出名称
  • Symbol.list_auxiliary_states: 列出当前 Symbol 的辅助参量名称
from mxnet import sym, symbol
X = sym.Variable('X')
out = sym.FullyConnected(data=X, name='fc1', num_hidden=1000)
out = symbol.BatchNorm(out, name='batchnorm')
out = sym.Activation(data=out, act_type='relu')
out = sym.FullyConnected(data=out, name='fc2', num_hidden=10)
arg_types, out_types, aux_types = out.infer_type(X='float32')
arg_types, out_types, aux_types
([numpy.float32,
  numpy.float32,
  numpy.float32,
  numpy.float32,
  numpy.float32,
  numpy.float32,
  numpy.float32],
 [numpy.float32],
 [numpy.float32, numpy.float32])
arg_shapes, out_shapes, aux_shapes = out.infer_shape(X=(100,784))
arg_shapes, out_shapes, aux_shapes
([(100, 784), (1000, 784), (1000,), (1000,), (1000,), (10, 1000), (10,)],
 [(100, 10)],
 [(1000,), (1000,)])
out.list_arguments()
['X',
 'fc1_weight',
 'fc1_bias',
 'batchnorm_gamma',
 'batchnorm_beta',
 'fc2_weight',
 'fc2_bias']
out.list_outputs()
['fc2_output']
out.list_auxiliary_states()
['batchnorm_moving_mean', 'batchnorm_moving_var']

Symbol 如何获取中间节点

在定义好一个网络之后,如何去获取任何一个节点的输出值对于深度神经网络的迁移来说非常重要,因为在使用时通常并不是自己从头开始训练一个网络,而是在别人训练好的网络基础上根据自己的问题进行微调。

X = sym.Variable('X')
fc1 = sym.FullyConnected(data=X, name='fc1', num_hidden=1000)
act = sym.Activation(data=fc1, act_type='relu')
fc2 = sym.FullyConnected(data=act, name='fc2', num_hidden=10)
net = sym.SoftmaxOutput(fc2, name="softmax")
net.get_internals()
<Symbol group [X, fc1_weight, fc1_bias, fc1, activation0, fc2_weight, fc2_bias, fc2, softmax_label, softmax]>
subnet = net.get_internals()['fc2_output']
subnet, subnet.list_arguments()
(<Symbol fc2>, ['X', 'fc1_weight', 'fc1_bias', 'fc2_weight', 'fc2_bias'])

首先使用 get_internals() 获取整个 Symbol 的子图,输出是整个内部节点的输出节点列表。然后可以通过索引获取网络的子图。在上面的例子中,我们获取网络层的倒数第二层 fc2,可以看到 fc2 也是一个 Symbol 对象。

fc2.list_arguments()
['X', 'fc1_weight', 'fc1_bias', 'fc2_weight', 'fc2_bias']

同理,有:

subnet = net.get_internals()['fc1_output']
subnet.list_arguments()
['X', 'fc1_weight', 'fc1_bias']

图的拼接

假如,我们拿到了别人训练好的网络参数文件和网络结构文件,我们可以固定网络图的前部分,在尾部添加额外的 Symbol 节点,但是在网络的头部替换输入节点较困难。

X = sym.Variable('X')
fc1 =  sym.FullyConnected(data=X, name='fc1', num_hidden=1000)
act =  sym.Activation(data=fc1, act_type='relu',name='act')
fc2 =  sym.FullyConnected(data=act, name='fc2', num_hidden=10)
net = sym.SoftmaxOutput(fc2,name="softmax")
net.save('model.symbol.json')

如上面所示,我们先定义好了一个 包含 10 个输出节点网络,然后将 Smbol 网络保存到 json 文件。接下来我们重新加载这个 json 文件,并且在网络结尾处重新修改网络层的输出为 20。

net = sym.load('model.symbol.json')
net.get_internals().list_outputs()
['X',
 'fc1_weight',
 'fc1_bias',
 'fc1_output',
 'act_output',
 'fc2_weight',
 'fc2_bias',
 'fc2_output',
 'softmax_label',
 'softmax_output']
newnet = net.get_internals()['act_output']
newnet = sym.FullyConnected(data=fc1,num_hidden=20,name ='fc2_new')
newnet = sym.SoftmaxOutput(data=newnet,name='softmax_new')
newnet.get_internals().list_outputs()
['X',
 'fc1_weight',
 'fc1_bias',
 'fc1_output',
 'fc2_new_weight',
 'fc2_new_bias',
 'fc2_new_output',
 'softmax_new_label',
 'softmax_new_output']

Metric

Metric 是用来衡量模型效果的接口
当我们定义好一个 Metric,比如说 Accuracy , 然后将 Accuracy 交给 Module 托管的时候,在每个 Epoch 结束时,会自动调用 update 方法,计算 正确预测的样本数量和总共的样本数量,进而调用父类中的 get 方法,计算出最后的 Acc。

from mxnet import metric

predicts = [nd.array([[0.3, 0.7], [0, 1.], [0.4, 0.6]])]
labels   = [nd.array([0, 1, 1])]
acc = metric.Accuracy()
acc.update(preds = predicts, labels = labels)
acc.get()
('accuracy', 0.6666666666666666)

Metric Hack 分析

如果我们想要定义 自己的 Metric 类,需要完成下面几步:

  • 继承 metric.EvalMetric 接口,重新定义 update 方法,update 传入参数分析:

    • labels : list 类型,每个元素对应 DataBatch 中的 label
    • predicts : list 类型, 是 Loss Symbol 中 label 外的输入,因此 list 中的元素个数与网络上 loss 的个数有关
  1. 函数需要完成:
  • 更新属性 sum_metricnum_inst 的值,mxnet 会调用 get 函数中的 self.sum_metric / self.num_inst 来计算当前 metric 的输出值。
  • 与一个特殊的 Callback 类有关: Speedometer 会自动打印出所有 metric 的值。

转载:https://www.imooc.com/article/278837

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
13天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
62 5
|
6天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
40 19
|
6天前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
43 7
|
16天前
|
机器学习/深度学习 自动驾驶 算法
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何利用这些原理进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习模型进行图像分类。最后,我们将讨论深度学习在图像识别领域的未来发展趋势和挑战。
|
16天前
|
机器学习/深度学习 数据采集 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的基本原理、优势以及面临的主要挑战。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率,同时指出了数据质量、模型泛化能力和计算资源等关键因素对性能的影响。
|
16天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用及其面临的挑战。通过分析深度学习模型如卷积神经网络(CNN)的工作原理,我们揭示了这些模型如何有效地处理和识别图像数据。同时,文章也指出了当前深度学习在图像识别中遇到的一些主要问题,包括过拟合、数据集偏差和模型解释性等,为读者提供了对这一领域全面而深入的理解。
|
17天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的深度学习模型及其在图像识别中的优势和面临的挑战。通过具体案例分析,揭示了深度学习如何推动图像识别技术的边界,并讨论了未来可能的发展方向。
31 4
|
16天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的革命性应用####
本文不采用传统摘要形式,直接以一段引人入胜的事实开头:想象一下,一台机器能够比人类更快速、更准确地识别出图片中的对象,这不再是科幻电影的情节,而是深度学习技术在图像识别领域带来的现实变革。通过构建复杂的神经网络模型,特别是卷积神经网络(CNN),计算机能够从海量数据中学习到丰富的视觉特征,从而实现对图像内容的高效理解和分类。本文将深入探讨深度学习如何改变图像识别的游戏规则,以及这一技术背后的原理、关键挑战与未来趋势。 ####
41 1
|
16天前
|
机器学习/深度学习 传感器 边缘计算
基于深度学习的图像识别技术在自动驾驶中的应用####
随着人工智能技术的飞速发展,深度学习已成为推动自动驾驶技术突破的关键力量之一。本文深入探讨了深度学习算法,特别是卷积神经网络(CNN)在图像识别领域的创新应用,以及这些技术如何被集成到自动驾驶汽车的视觉系统中,实现对复杂道路环境的实时感知与理解,从而提升驾驶的安全性和效率。通过分析当前技术的最前沿进展、面临的挑战及未来趋势,本文旨在为读者提供一个全面而深入的视角,理解深度学习如何塑造自动驾驶的未来。 ####
67 1
下一篇
DataWorks