MXNet 核心接口

简介: 介绍一些 MXNet 常用的 API
from mxnet import cpu, gpu, nd

Context

Context 是模型的数据放置的环境:

a = nd.array([2, 4], ctx=cpu())
a1 = nd.array([3, 7], ctx=gpu(0))
a.context, a1.context
(cpu(0), gpu(0))

当然,也可以在 CPU 与 GPU 之间进行复制。

a2 = a.copyto(a1)   # 要求 a 与 a1 有相同的 shape
a1 is a2, a2.context
(True, gpu(0))
a1  # a1 被修改了

[2. 4.]
<NDArray 2 @gpu(0)>

为了进行深度复制,需要使用:

a3 = nd.array([3, 9])
a4 = a3.as_in_context(gpu(0))
a3 is a4, a3.context, a4.context
(False, cpu(0), gpu(0))

Symbol

  • Symbol 的基本函数 - 定义计算图
  • Symbol.infer_type: 推导当前 Symbol 所依赖的所有 Symbol 数据类型
  • Symbol.infer_shape: 推导当前 Symbol 所依赖的所有 Symbol 的形状
  • Symbol.list_argments: 列出当前 Symbol 所用到的基本参数名称
  • Symbo.list_outputs: 列出当前 Symbol 的输出名称
  • Symbol.list_auxiliary_states: 列出当前 Symbol 的辅助参量名称
from mxnet import sym, symbol
X = sym.Variable('X')
out = sym.FullyConnected(data=X, name='fc1', num_hidden=1000)
out = symbol.BatchNorm(out, name='batchnorm')
out = sym.Activation(data=out, act_type='relu')
out = sym.FullyConnected(data=out, name='fc2', num_hidden=10)
arg_types, out_types, aux_types = out.infer_type(X='float32')
arg_types, out_types, aux_types
([numpy.float32,
  numpy.float32,
  numpy.float32,
  numpy.float32,
  numpy.float32,
  numpy.float32,
  numpy.float32],
 [numpy.float32],
 [numpy.float32, numpy.float32])
arg_shapes, out_shapes, aux_shapes = out.infer_shape(X=(100,784))
arg_shapes, out_shapes, aux_shapes
([(100, 784), (1000, 784), (1000,), (1000,), (1000,), (10, 1000), (10,)],
 [(100, 10)],
 [(1000,), (1000,)])
out.list_arguments()
['X',
 'fc1_weight',
 'fc1_bias',
 'batchnorm_gamma',
 'batchnorm_beta',
 'fc2_weight',
 'fc2_bias']
out.list_outputs()
['fc2_output']
out.list_auxiliary_states()
['batchnorm_moving_mean', 'batchnorm_moving_var']

Symbol 如何获取中间节点

在定义好一个网络之后,如何去获取任何一个节点的输出值对于深度神经网络的迁移来说非常重要,因为在使用时通常并不是自己从头开始训练一个网络,而是在别人训练好的网络基础上根据自己的问题进行微调。

X = sym.Variable('X')
fc1 = sym.FullyConnected(data=X, name='fc1', num_hidden=1000)
act = sym.Activation(data=fc1, act_type='relu')
fc2 = sym.FullyConnected(data=act, name='fc2', num_hidden=10)
net = sym.SoftmaxOutput(fc2, name="softmax")
net.get_internals()
<Symbol group [X, fc1_weight, fc1_bias, fc1, activation0, fc2_weight, fc2_bias, fc2, softmax_label, softmax]>
subnet = net.get_internals()['fc2_output']
subnet, subnet.list_arguments()
(<Symbol fc2>, ['X', 'fc1_weight', 'fc1_bias', 'fc2_weight', 'fc2_bias'])

首先使用 get_internals() 获取整个 Symbol 的子图,输出是整个内部节点的输出节点列表。然后可以通过索引获取网络的子图。在上面的例子中,我们获取网络层的倒数第二层 fc2,可以看到 fc2 也是一个 Symbol 对象。

fc2.list_arguments()
['X', 'fc1_weight', 'fc1_bias', 'fc2_weight', 'fc2_bias']

同理,有:

subnet = net.get_internals()['fc1_output']
subnet.list_arguments()
['X', 'fc1_weight', 'fc1_bias']

图的拼接

假如,我们拿到了别人训练好的网络参数文件和网络结构文件,我们可以固定网络图的前部分,在尾部添加额外的 Symbol 节点,但是在网络的头部替换输入节点较困难。

X = sym.Variable('X')
fc1 =  sym.FullyConnected(data=X, name='fc1', num_hidden=1000)
act =  sym.Activation(data=fc1, act_type='relu',name='act')
fc2 =  sym.FullyConnected(data=act, name='fc2', num_hidden=10)
net = sym.SoftmaxOutput(fc2,name="softmax")
net.save('model.symbol.json')

如上面所示,我们先定义好了一个 包含 10 个输出节点网络,然后将 Smbol 网络保存到 json 文件。接下来我们重新加载这个 json 文件,并且在网络结尾处重新修改网络层的输出为 20。

net = sym.load('model.symbol.json')
net.get_internals().list_outputs()
['X',
 'fc1_weight',
 'fc1_bias',
 'fc1_output',
 'act_output',
 'fc2_weight',
 'fc2_bias',
 'fc2_output',
 'softmax_label',
 'softmax_output']
newnet = net.get_internals()['act_output']
newnet = sym.FullyConnected(data=fc1,num_hidden=20,name ='fc2_new')
newnet = sym.SoftmaxOutput(data=newnet,name='softmax_new')
newnet.get_internals().list_outputs()
['X',
 'fc1_weight',
 'fc1_bias',
 'fc1_output',
 'fc2_new_weight',
 'fc2_new_bias',
 'fc2_new_output',
 'softmax_new_label',
 'softmax_new_output']

Metric

Metric 是用来衡量模型效果的接口
当我们定义好一个 Metric,比如说 Accuracy , 然后将 Accuracy 交给 Module 托管的时候,在每个 Epoch 结束时,会自动调用 update 方法,计算 正确预测的样本数量和总共的样本数量,进而调用父类中的 get 方法,计算出最后的 Acc。

from mxnet import metric

predicts = [nd.array([[0.3, 0.7], [0, 1.], [0.4, 0.6]])]
labels   = [nd.array([0, 1, 1])]
acc = metric.Accuracy()
acc.update(preds = predicts, labels = labels)
acc.get()
('accuracy', 0.6666666666666666)

Metric Hack 分析

如果我们想要定义 自己的 Metric 类,需要完成下面几步:

  • 继承 metric.EvalMetric 接口,重新定义 update 方法,update 传入参数分析:

    • labels : list 类型,每个元素对应 DataBatch 中的 label
    • predicts : list 类型, 是 Loss Symbol 中 label 外的输入,因此 list 中的元素个数与网络上 loss 的个数有关
  1. 函数需要完成:
  • 更新属性 sum_metricnum_inst 的值,mxnet 会调用 get 函数中的 self.sum_metric / self.num_inst 来计算当前 metric 的输出值。
  • 与一个特殊的 Callback 类有关: Speedometer 会自动打印出所有 metric 的值。

转载:https://www.imooc.com/article/278837

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
36 9
|
3天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。
|
14天前
|
机器学习/深度学习 人工智能 监控
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。随着卷积神经网络(CNN)的发展,图像识别的准确性和效率得到了显著提升。然而,数据不平衡、模型泛化能力、计算资源消耗等问题仍然是制约深度学习在图像识别领域进一步发展的关键因素。本文将详细介绍深度学习在图像识别中的应用案例,并讨论解决现有挑战的可能策略。
|
4天前
|
机器学习/深度学习 分布式计算 并行计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的卷积神经网络(CNN)架构,并讨论了在实际应用中遇到的挑战和可能的解决方案。通过对比研究,揭示了不同网络结构对识别准确率的影响,并提出了优化策略。此外,文章还探讨了深度学习模型在处理大规模数据集时的性能瓶颈,以及如何通过硬件加速和算法改进来提升效率。
|
5天前
|
机器学习/深度学习 人工智能 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第38天】本文将深入探讨深度学习如何在图像识别领域大放异彩,并揭示其背后的技术细节和面临的挑战。我们将通过实际案例,了解深度学习如何改变图像处理的方式,以及它在实际应用中遇到的困难和限制。
|
5天前
|
机器学习/深度学习 传感器 自动驾驶
深度学习在自动驾驶中的应用与挑战####
本文探讨了深度学习技术在自动驾驶领域的应用现状、面临的主要挑战及未来发展趋势。通过分析卷积神经网络(CNN)和循环神经网络(RNN)等关键算法在环境感知、决策规划中的作用,结合特斯拉Autopilot和Waymo的实际案例,揭示了深度学习如何推动自动驾驶技术向更高层次发展。文章还讨论了数据质量、模型泛化能力、安全性及伦理道德等问题,为行业研究者和开发者提供了宝贵的参考。 ####
|
7天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
8天前
|
机器学习/深度学习 算法 数据处理
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了其背后的原理、主要算法以及在实际场景中的应用效果。同时,文章也指出了当前深度学习在图像识别领域面临的挑战,包括数据不平衡、模型泛化能力、计算资源需求等问题,并展望了未来的研究方向。
|
4天前
|
机器学习/深度学习 自然语言处理 监控
探索深度学习在自然语言处理中的应用与挑战
本文深入分析了深度学习技术在自然语言处理(NLP)领域的应用,并探讨了当前面临的主要挑战。通过案例研究,展示了如何利用神经网络模型解决文本分类、情感分析、机器翻译等任务。同时,文章也指出了数据稀疏性、模型泛化能力以及计算资源消耗等问题,并对未来的发展趋势进行了展望。

热门文章

最新文章