How to troubleshoot slow queries in RDS for SQL Server

本文涉及的产品
云数据库 RDS SQL Server,基础系列 2核4GB
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
简介: What will affect the speed of queries? Index fragmentation Fragmentation exists when indexes have pages in which the logical ordering, based on the

What will affect the speed of queries?

  1. Index fragmentation
    Fragmentation exists when indexes have pages in which the logical ordering, based on the key value, does not match the physical ordering inside the data file. Heavily fragmented indexes can degrade query performance and cause your application to respond slowly.

  2. Old statistics
    SQL Server collects statistical information of index and column data. SQL Server query optimizer uses it to estimate cost of query execution plans and chooses a quality-high execution plan. Large number of insertupdatedelete operations will make the statistics out of date which will cause SQL Server generates a bad execution plan.

    If you want to know details about how statistics affect SQL Server, please refer to https://blogs.msdn.microsoft.com/ggaurav/2015/04/10/how-statistics-in-sql-server-determines-performance/

  3. No suitable index (to specific slow query)
  4. Instance configurations

Now you get the general ideas of why queries are slow. Let's start the troubleshooting steps.

  1. Using the following statements to list index fragmentation in a databases.
    SELECT dbschemas.[name] as 'Schema',

dbtables.[name] as 'Table',
dbindexes.[name] as 'Index'
indexstats.avg_fragmentation_in_percent,
indexstats.page_count
FROM sys.dm_db_index_physical_stats (DB_ID(), NULL, NULL, NULL, NULL) AS indexstats
INNER JOIN sys.tables dbtables on dbtables.[object_id] = indexstats.[object_id]
INNER JOIN sys.schemas dbschemas on dbtables.[schema_id] = dbschemas.[schema_id]
INNER JOIN sys.indexes AS dbindexes ON dbindexes.[object_id] = indexstats.[object_id]
AND indexstats.index_id = dbindexes.index_id
WHERE indexstats.database_id = DB_ID()
ORDER BY indexstats.avg_fragmentation_in_percent desc

After the degree of fragmentation is known, use the following table to determine the best method to correct the fragmentation.
avg_fragmentation_in_percent value Corrective statement

5% and < = 30% ALTER INDEX REORGANIZE
30% ALTER INDEX REBUILD WITH (ONLINE = ON)*

For more details, please refer to https://msdn.microsoft.com/en-us/library/ms189858.aspx .

  1. Check the statistics update time in this database
    SELECT t.name TableName, s.[name] StatName, STATS_DATE(t.object_id,s.[stats_id]) LastUpdated

FROM sys.[stats] AS s
JOIN sys.[tables] AS t

ON [s].[object_id] = [t].[object_id]

WHERE t.type = 'u'

A simple way to know whether the statistics are out of date is to compare the actual rows and estimated rows in an actual execution plan. If different, you need to update statistics manually. Please refer to https://msdn.microsoft.com/en-us/library/ms187348.aspx.

  1. The following statement will help check missing index in a database and give suggestions about new indexes.
    SELECT

dm_mid.database_id AS DatabaseID,
dm_migs.avg_user_impact*(dm_migs.user_seeks+dm_migs.user_scans) Avg_Estimated_Impact,
dm_migs.last_user_seek AS Last_User_Seek,
OBJECT_NAME(dm_mid.OBJECT_ID,dm_mid.database_id) AS [TableName],
'CREATE INDEX [IX_' + OBJECT_NAME(dm_mid.OBJECT_ID,dm_mid.database_id) + '_'

  • REPLACE(REPLACE(REPLACE(ISNULL(dm_mid.equality_columns,''),', ','_'),'[',''),']','') +
    CASE

WHEN dm_mid.equality_columns IS NOT NULL AND dm_mid.inequality_columns IS NOT NULL THEN '_'
ELSE ''
END

  • REPLACE(REPLACE(REPLACE(ISNULL(dm_mid.inequality_columns,''),', ','_'),'[',''),']','')
  • ']'
  • ' ON ' + dm_mid.statement
  • ' (' + ISNULL (dm_mid.equality_columns,'')
  • CASE WHEN dm_mid.equality_columns IS NOT NULL AND dm_mid.inequality_columns IS NOT NULL THEN ',' ELSE
    '' END
  • ISNULL (dm_mid.inequality_columns, '')
  • ')'
  • ISNULL (' INCLUDE (' + dm_mid.included_columns + ')', '') AS Create_Statement
    FROM sys.dm_db_missing_index_groups dm_mig

INNER JOIN sys.dm_db_missing_index_group_stats dm_migs
ON dm_migs.group_handle = dm_mig.index_group_handle
INNER JOIN sys.dm_db_missing_index_details dm_mid
ON dm_mig.index_handle = dm_mid.index_handle
WHERE dm_mid.database_ID = DB_ID()
ORDER BY Avg_Estimated_Impact DESC
GO

  1. When a specific query is slow, we can open statistics io, time and profile on to collect execution io, time and execution plan to check the bottle neck.
  2. statistics io on

set statistics time on
set statistics profile on
select a,b from Demotable where a>1
set statistics io off
set statistics time off
set statistics profile off

  1. Check the configurations of RDS for SQL Server instance, and upgrade the instance if needed.
相关实践学习
使用SQL语句管理索引
本次实验主要介绍如何在RDS-SQLServer数据库中,使用SQL语句管理索引。
SQL Server on Linux入门教程
SQL Server数据库一直只提供Windows下的版本。2016年微软宣布推出可运行在Linux系统下的SQL Server数据库,该版本目前还是早期预览版本。本课程主要介绍SQLServer On Linux的基本知识。 相关的阿里云产品:云数据库RDS&nbsp;SQL Server版 RDS SQL Server不仅拥有高可用架构和任意时间点的数据恢复功能,强力支撑各种企业应用,同时也包含了微软的License费用,减少额外支出。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/sqlserver
目录
相关文章
|
2月前
|
SQL 关系型数据库 MySQL
mysql 简单的sql语句,入门级增删改查
介绍MySQL中的基本SQL语句,包括数据的增删改查操作,使用示例和简单的数据表进行演示。
mysql 简单的sql语句,入门级增删改查
|
1月前
|
SQL 关系型数据库 MySQL
|
18天前
|
SQL 运维 关系型数据库
MySQL 运维 SQL 备忘
MySQL 运维 SQL 备忘录
43 1
|
2月前
|
存储 SQL 关系型数据库
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
MySQL调优主要分为三个步骤:监控报警、排查慢SQL、MySQL调优。 排查慢SQL:开启慢查询日志 、找出最慢的几条SQL、分析查询计划 。 MySQL调优: 基础优化:缓存优化、硬件优化、参数优化、定期清理垃圾、使用合适的存储引擎、读写分离、分库分表; 表设计优化:数据类型优化、冷热数据分表等。 索引优化:考虑索引失效的11个场景、遵循索引设计原则、连接查询优化、排序优化、深分页查询优化、覆盖索引、索引下推、用普通索引等。 SQL优化。
489 15
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
|
28天前
|
SQL 存储 关系型数据库
SQL文件导入MySQL数据库的详细指南
数据库中的数据转移是一项常规任务,无论是在数据迁移过程中,还是在数据备份、还原场景中,导入导出SQL文件显得尤为重要。特别是在使用MySQL数据库时,如何将SQL文件导入数据库是一项基本技能。本文将详细介绍如何将SQL文件导入MySQL数据库,并提供一个清晰、完整的步骤指南。这篇文章的内容字数大约在
56 1
|
7天前
|
SQL 关系型数据库 MySQL
MySql5.6版本开启慢SQL功能-本次采用永久生效方式
MySql5.6版本开启慢SQL功能-本次采用永久生效方式
16 0
|
7天前
|
SQL 关系型数据库 MySQL
mysql编写sql脚本:要求表没有主键,但是想查询没有相同值的时候才进行插入
mysql编写sql脚本:要求表没有主键,但是想查询没有相同值的时候才进行插入
15 0
|
30天前
|
存储 SQL 关系型数据库
MySQL查询数据库锁表的SQL语句
MySQL查询数据库锁表的SQL语句
71 1
|
2月前
|
存储 关系型数据库 MySQL
MySQL高级篇——覆盖索引、前缀索引、索引下推、SQL优化、主键设计
覆盖索引、前缀索引、索引下推、SQL优化、EXISTS 和 IN 的区分、建议COUNT(*)或COUNT(1)、建议SELECT(字段)而不是SELECT(*)、LIMIT 1 对优化的影响、多使用COMMIT、主键设计、自增主键的缺点、淘宝订单号的主键设计、MySQL 8.0改造UUID为有序
MySQL高级篇——覆盖索引、前缀索引、索引下推、SQL优化、主键设计
|
20天前
|
SQL 存储 关系型数据库
mysql 数据库空间统计sql
mysql 数据库空间统计sql
38 0