一种小资源情况下RDS数据实时同步StarRocks方案

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 使用一台4C8 G服务器轻松实现2个MySQL实例中通过负责分库分表规则之后的5000多张表的数据实时同步到StarRocks

一、背景

目前需要将阿里云RDS数据库的数据同步到自建的StarRocks集群。之前使用DolphinScheduler通过定时调度Datax任务,将数据同步到StarRocks集群中,但是随着业务的发展,这种方式出现了三个问题:

1.为了满足系统三级等保的要求,阿里云RDS不再支持通过公网进行访问,只能在阿里云内网中进行访问。

2.随着业务的发展,批量的数据同步已经无法满足业务对数据更新频率的要求。

为了解决以上的问题,诞生了如下的数据同步架构。

二、数据同步架构

为了解决上面面临的问题,设计了如下的数据同步架构,来进行数据的实时同步。具体架构如下:

1.使用一台4C8G的阿里云服务器,该服务器可以访问内网的RDS服务器。

2.将KAFKA集群开通公网访问。

3.在这台阿里云服务器上面部署数据实时同步的脚步,一边实时读取RDS的binlog,将其解析加密之后发送到KAFKA中。

4.在公司内网环境中创建KAFKA CONNECTOR集群,创建connector将kafka数据解密之后同步到公司自建的StarRocks中。

三、现有方案的调研

建设初期调研了一些现在主流的方案,但是发现各个方案都存在一定的问题吗,从而选择了目前的这种方式,调用的现有解决方案有:

  1. Flink-CDC

Flink-CDC是目前最流行的实时数据同步方案,但是经过调研发现Flink集群所需资源太大,目前只有一台4C8G的阿里云服务器,而且这已经是能得到的最高配置。

用于目前业务的分库分表多种多样(按照范围分表, 按照组织分表,按照年度分表,按照月度分表,按照组织月度组合分表等等),业务表因为历史原因存在大量的字段不规范问题(全大写、全小写、驼峰、下划线等等),采用Flink-CDC如果分表建设task,则资源根本不够,如果耦合在一起,则需要进行大量的编码,后续修改复杂,因此放弃该方案。

  1. Apache SeaTunnel
Apache SeaTunnel是目前流行的另外一个实时数据同步工具,但是其目前无法支持表的模糊匹配,由于业务系统中存储多种方式的分库分表技术,而且分表数量巨大,有些表分表数量成百上千,有些按照组织分表的则是随时可能新增表,导致其很难进行兼容,需要进行上千张表的配置,基本没有可行性,所以放弃该方案。

四、核心步骤技术方案

  1. binlog实时消费

binlog的实时数据同步采用开源项目python-mysql-replication进行实现,python-mysql-replication是在PyMYSQL之上构建的MySQL复制协议的纯Python实现,通过其可以很简单的实时消费RDS数据库的binlog。

Pure Python Implementation of MySQL replication protocol build on top of PyMYSQL. This allows you to receive event like insert, update, delete with their datas and raw SQL queries.
  1. 数据加解密

为了保证数据在两个内网直接传输的安全,要求需要对进行传输的数据进行加密,经过调研之后选择了 AES-GCM对称加密,AES-GCM是一种 高效,支持硬件加速 ,适用于大数据量加密、文件加密、流加密 。

  1. 数据同步到StarRocks

从kafka消费数据到StarRocks,采用的使用StarRocks官方支持的starrocks-connector-for-kafka,但是由于我们的数据进行了加密操作,所以需要对该组件进行扩展,再其中加入进行数据解密的操作。

  1. kafka内外网映射

由于RDS和StarRocks在两个不同的内网之中,为了连通两个内网,使用kafka进行数据的中转操作。这就需要kafka能够提供公网的访问。通过配置不同的advertised.listeners来进行实现。

  1. 批量同步

在进行一张历史已经存在的表数据同步的时候,需要先同步历史已经存在的数据,然后再按照binlog实时进行新数据的同步工作,历史数据的同步采用DataX来进行同步。

  1. DataX写Kafka

DataX属于批量数据同步的组件,而Kafka属于流式数据同步的组件,两者的定位不一致,因此DataX官方并没有用于Kafka的Writer,这就需要我们自己进行扩展,编写Kafka-Writer,来进行支持。

  1. StarRocks表的增删改

StarRocks中存在主键表模型,该模型支持数据的增删改操作,同时starrocks-connector-for-kafka底层采用StreamLoad进行实现,StreamLoad支持通过在数据中增加对应的__op字段来支持对表的数据进行增删改。

  1. 分库分表的支持

系统存在多种方式的分库分表,由于分库分表之后的主键可能重复,因此可以在数据同步的时候,对分库分表进行分析,设计以 (表名,原表主键) 或者 (库名,表名,原表主键)作为对应StarRocks表的主键,来进行对应的支持操作。

五、数据同步过程说明

下面以一张已经存在的表如何进行数据同步为例,进行整个数据同步过程的说明:

  1. 根据要同步的RDS中表的结构信息,在StarRocks中创建对应的表。
  2. 在kafka中创建对应的进行历史批量数据同步的topic和binlog增量同步的topic。
  3. 在进行增量同步的脚步中新增这张表的binlog同步配置,将binlog数据写入用于增量同步的kafka的topic中。
  4. 使用DataX将历史数据全量同步到用于批量同步的kafka的topic中。
  5. 创建用于同步历史数据到StarRocks表中的Connector,消费批量topic中的数据。
  6. 根据DataX返回的同步数据量和StarRocks中已经接收到的数据量进行比对,如果一致则表明历史数据已经全部同步完成,此时可以删除删除用于历史数据同步的topic和Connector,也可以保留不管。
  7. 创建用于增量同步的Connector,消费binlog数据,实时接入StarRocks。

六、具体的实现

  1. DataX的kafkawriter实现
public class KafkaWriter extends Writer {
   

    public static class Job extends Writer.Job {
   

        private static final Logger logger = LoggerFactory.getLogger(Job.class);
        private Configuration conf = null;

        @Override
        public List<Configuration> split(int mandatoryNumber) {
   
            List<Configuration> configurations = new ArrayList<Configuration>(mandatoryNumber);
            for (int i = 0; i < mandatoryNumber; i++) {
   
                configurations.add(conf);
            }
            return configurations;
        }

        private void validateParameter() {
   
            this.conf.getNecessaryValue(Key.BOOTSTRAP_SERVERS, KafkaWriterErrorCode.REQUIRED_VALUE);
            this.conf.getNecessaryValue(Key.TOPIC, KafkaWriterErrorCode.REQUIRED_VALUE);
        }

        @Override
        public void init() {
   
            this.conf = super.getPluginJobConf();
            logger.info("kafka writer params:{}", conf.toJSON());
            this.validateParameter();
        }


        @Override
        public void destroy() {
   

        }
    }

    public static class Task extends Writer.Task {
   
        private static final Logger logger = LoggerFactory.getLogger(Task.class);
        private static final String NEWLINE_FLAG = System.getProperty("line.separator", "\n");

        private Producer<String, String> producer;
        private String fieldDelimiter;
        private Configuration conf;
        private Properties props;
        private AesEncryption aesEncryption;
        private List<String> columns;

        @Override
        public void init() {
   
            this.conf = super.getPluginJobConf();
            fieldDelimiter = conf.getUnnecessaryValue(Key.FIELD_DELIMITER, "\t", null);
            columns = conf.getList(Key.COLUMN_LIST, new ArrayList<>(), String.class);

            props = new Properties();
            props.put("bootstrap.servers", conf.getString(Key.BOOTSTRAP_SERVERS));
            props.put("acks", conf.getUnnecessaryValue(Key.ACK, "0", null));//这意味着leader需要等待所有备份都成功写入日志,这种策略会保证只要有一个备份存活就不会丢失数据。这是最强的保证。
            props.put("retries", conf.getUnnecessaryValue(Key.RETRIES, "5", null));
            props.put("retry.backoff.ms", "1000");
            props.put("batch.size", conf.getUnnecessaryValue(Key.BATCH_SIZE, "16384", null));
            props.put("linger.ms", 100);
            props.put("connections.max.idle.ms", 300000);
            props.put("max.in.flight.requests.per.connection", 5);
            props.put("socket.keepalive.enable", true);
            props.put("key.serializer", conf.getUnnecessaryValue(Key.KEYSERIALIZER, "org.apache.kafka.common.serialization.StringSerializer", null));
            props.put("value.serializer", conf.getUnnecessaryValue(Key.VALUESERIALIZER, "org.apache.kafka.common.serialization.StringSerializer", null));
            producer = new KafkaProducer<String, String>(props);
            String encryptKey = conf.getUnnecessaryValue(Key.ENCRYPT_KEY, null, null);
            if(encryptKey != null){
   
                aesEncryption = new AesEncryption(encryptKey);
            }
        }

        @Override
        public void prepare() {
   
            AdminClient adminClient = AdminClient.create(props);
            ListTopicsResult topicsResult = adminClient.listTopics();
            String topic = conf.getNecessaryValue(Key.TOPIC, KafkaWriterErrorCode.REQUIRED_VALUE);
            try {
   
                if (!topicsResult.names().get().contains(topic)) {
   
                    new NewTopic(
                            topic,
                            Integer.parseInt(conf.getUnnecessaryValue(Key.TOPIC_NUM_PARTITION, "1", null)),
                            Short.parseShort(conf.getUnnecessaryValue(Key.TOPIC_REPLICATION_FACTOR, "1", null))
                    );
                    List<NewTopic> newTopics = new ArrayList<NewTopic>();
                    adminClient.createTopics(newTopics);
                }
                adminClient.close();
            } catch (Exception e) {
   
                throw new DataXException(KafkaWriterErrorCode.CREATE_TOPIC, KafkaWriterErrorCode.REQUIRED_VALUE.getDescription());
            }
        }

        @Override
        public void startWrite(RecordReceiver lineReceiver) {
   
            logger.info("start to writer kafka");
            Record record = null;
            while ((record = lineReceiver.getFromReader()) != null) {
   
                if (conf.getUnnecessaryValue(Key.WRITE_TYPE, WriteType.TEXT.name(), null)
                        .equalsIgnoreCase(WriteType.TEXT.name())) {
   
                    producer.send(new ProducerRecord<String, String>(this.conf.getString(Key.TOPIC),
                            Md5Encrypt.md5Hexdigest(recordToString(record)),
                            aesEncryption ==null ? recordToString(record): JSONObject.toJSONString(aesEncryption.encrypt(recordToString(record))))
                    );
                } else if (conf.getUnnecessaryValue(Key.WRITE_TYPE, WriteType.TEXT.name(), null)
                        .equalsIgnoreCase(WriteType.JSON.name())) {
   
                    producer.send(new ProducerRecord<String, String>(this.conf.getString(Key.TOPIC),
                            Md5Encrypt.md5Hexdigest(recordToString(record)),
                            aesEncryption ==null ? recordToJsonString(record) : JSONObject.toJSONString(aesEncryption.encrypt(recordToJsonString(record))))
                    );
                }
                producer.flush();
            }
        }

        @Override
        public void destroy() {
   
            if (producer != null) {
   
                producer.close();
            }
        }

        /**
         * 数据格式化
         *
         * @param record
         * @return
         */
        private String recordToString(Record record) {
   
            int recordLength = record.getColumnNumber();
            if (0 == recordLength) {
   
                return NEWLINE_FLAG;
            }
            Column column;
            StringBuilder sb = new StringBuilder();
            for (int i = 0; i < recordLength; i++) {
   
                column = record.getColumn(i);
                sb.append(column.asString()).append(fieldDelimiter);
            }

            sb.setLength(sb.length() - 1);
            sb.append(NEWLINE_FLAG);
            return sb.toString();
        }

        /**
         * 数据格式化
         *
         * @param record 数据
         *
         */
        private String recordToJsonString(Record record) {
   
            int recordLength = record.getColumnNumber();
            if (0 == recordLength) {
   
                return "{}";
            }
            Map<String, Object> map = new HashMap<>();
            for (int i = 0; i < recordLength; i++) {
   
                String key = columns.get(i);
                Column column = record.getColumn(i);
                map.put(key, column.getRawData());
            }
            return JSONObject.toJSONString(map);
        }
    }
}

进行数据加密的实现:

public class AesEncryption {
   

    private SecretKey secretKey;

    private static final int GCM_TAG_LENGTH = 16; // 16字节 (128位)

    public AesEncryption(String secretKey) {
   
        byte[] keyBytes = hexStringToByteArray(secretKey);
        this.secretKey = new SecretKeySpec(keyBytes, 0, keyBytes.length, "AES");
    }

    public ResultModel encrypt(String data) {
   
        try {
   
            byte[] nonce = new byte[GCM_TAG_LENGTH];
            new SecureRandom().nextBytes(nonce);
            Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");
            GCMParameterSpec gcmSpec = new GCMParameterSpec(GCM_TAG_LENGTH * 8, nonce);
            cipher.init(Cipher.ENCRYPT_MODE, secretKey, gcmSpec);
            byte[] encryptedBytes = cipher.doFinal(data.getBytes());
            return new ResultModel(bytesToHex(nonce), bytesToHex(encryptedBytes));
        } catch (Exception e) {
   
            throw new RuntimeException(e);
        }
    }

    /**
     * 将 16 进制字符串转换为字节数组
     */
    private byte[] hexStringToByteArray(String s) {
   
        int len = s.length();
        byte[] data = new byte[len / 2];
        for (int i = 0; i < len; i += 2) {
   
            data[i / 2] = (byte) ((Character.digit(s.charAt(i), 16) << 4)
                    + Character.digit(s.charAt(i + 1), 16));
        }
        return data;
    }

    // 将字节数组转换为 16 进制字符串
    public static String bytesToHex(byte[] bytes) {
   
        StringBuilder hexString = new StringBuilder();
        for (byte b : bytes) {
   
            String hex = Integer.toHexString(0xff & b);
            if (hex.length() == 1) hexString.append('0');
            hexString.append(hex);
        }
        return hexString.toString();
    }

}
  1. starrocks-connector-for-kafka的实现
package com.starrocks.connector.kafka.transforms;

public class DecryptJsonTransformation <R extends ConnectRecord<R>> implements Transformation<R> {
   
    private static final Logger LOG = LoggerFactory.getLogger(DecryptJsonTransformation.class);
    private AesEncryption aesEncryption;

    private interface ConfigName {
   
        String SECRET_KEY = "secret.key";
    }

    public static final ConfigDef CONFIG_DEF = new ConfigDef()
            .define(ConfigName.SECRET_KEY, ConfigDef.Type.STRING, ConfigDef.Importance.HIGH, "secret key");


    @Override
    public R apply(R record) {
   
        if (record.value() == null) {
   
            return record;
        }
        String value = (String) record.value();
        try {
   
            String newValue = aesEncryption.decrypt(value);
            JSONObject jsonObject = JSON.parseObject(newValue, JSONReader.Feature.UseBigDecimalForDoubles);
            return record.newRecord(record.topic(), record.kafkaPartition(), record.keySchema(), record.key(), null, jsonObject, record.timestamp());
        } catch (Exception e) {
   
            return record;
        }
    }

    @Override
    public ConfigDef config() {
   
        return CONFIG_DEF;
    }

    @Override
    public void close() {
   

    }

    @Override
    public void configure(Map<String, ?> map) {
   
        final SimpleConfig config = new SimpleConfig(CONFIG_DEF, map);
        String secretKey = config.getString(ConfigName.SECRET_KEY);
        aesEncryption = new AesEncryption(secretKey);
    }
}
public class AesEncryption {
   

    private SecretKeySpec secretKey;

    public AesEncryption(String secretKey) {
   
        byte[] keyBytes = hexStringToByteArray(secretKey);
        this.secretKey = new SecretKeySpec(keyBytes, "AES");
    }

    public String encrypt(String data) {
   
        try {
   
            Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");
            cipher.init(Cipher.ENCRYPT_MODE, secretKey);
            byte[] encryptedBytes = cipher.doFinal(data.getBytes());
            return Base64.getEncoder().encodeToString(encryptedBytes);
        } catch (Exception e) {
   
            throw new RuntimeException(e);
        }
    }

    public String decrypt(String encryptedData) throws Exception {
   
        JSONObject jsonMessage = JSONObject.parseObject(encryptedData);
        byte[] ciphertext = hexStringToByteArray(jsonMessage.getString("ciphertext"));
        byte[] nonce = hexStringToByteArray(jsonMessage.getString("nonce"));
        return decryptData(ciphertext, nonce);
    }


    /**
     * 使用 AES-GCM 解密数据
     * @param ciphertext 密文
     * @param nonce 随机 IV(nonce)
     * @return 解密后的明文
     * @throws Exception
     */
    private  String decryptData(byte[] ciphertext, byte[] nonce) throws Exception {
   
        // 创建 GCMParameterSpec 对象,用于解密时的认证标签验证
        GCMParameterSpec gcmSpec = new GCMParameterSpec(128, nonce); // 128 位标签
        // 创建 AES Cipher 对象,设置为解密模式
        Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");
        cipher.init(Cipher.DECRYPT_MODE, secretKey , gcmSpec);
        // 解密数据
        // 2. 拼接ciphertext和tag
        byte[] decryptedData = cipher.doFinal(ciphertext);
        // 返回解密后的明文
        return new String(decryptedData);
    }

    /**
     * 将 16 进制字符串转换为字节数组
     */
    private byte[] hexStringToByteArray(String s) {
   
        int len = s.length();
        byte[] data = new byte[len / 2];
        for (int i = 0; i < len; i += 2) {
   
            data[i / 2] = (byte) ((Character.digit(s.charAt(i), 16) << 4)
                    + Character.digit(s.charAt(i + 1), 16));
        }
        return data;
    }
}
  1. Kafka的公网配置

Kafka的内外网配置,只需要修改kafka/config下面的server.properties文件中的如下配置即可。

# 配置kafka的监听端口,同时监听9093和9092
listeners=INTERNAL://kafka节点3内网IP:9093,EXTERNAL://kafka节点3内网IP:9092

# 配置kafka的对外广播地址, 同时配置内网的9093和外网的19092
advertised.listeners=INTERNAL://kafka节点3内网IP:9093,EXTERNAL://公网IP:19092

# 配置地址协议
listener.security.protocol.map=INTERNAL:PLAINTEXT,EXTERNAL:PLAINTEXT

# 指定broker内部通信的地址
inter.broker.listener.name=INTERNAL
  1. Kafka-Connector的部署流程

a. 创建一个目录,来存放connect的

# 创建文件
mkdir /opt/kafka-connect 

# 将connect文件解压到该目录中

b. 修改kafka的配置文件config/connect-distributed.properties(以1台为例)

# 配置kafka的地址信息
bootstrap.servers=192.168.20.41:9093,192.168.20.42:9093,192.168.20.43:9093

# 配置connect的地址
plugin.path=/vmimg/opt/kafka-connect/starrocks-kafka-connector

c. 启动connect(以1台为例)

 nohup bin/connect-distributed.sh config/connect-distributed.properties > start_connect.log 2>&1 &
  1. 监听数据库binlog文件并加密发送到kafka
import os
import json
import binascii
import logging
import re
from typing import List, Dict
from datetime import datetime, date, timedelta
from decimal import Decimal
from Crypto.Cipher import AES
from pymysqlreplication import BinLogStreamReader
from pymysqlreplication.row_event import BINLOG
from kafka import KafkaProducer


logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s - %(levelname)s - %(lineno)d - %(message)s',
                    filename='mzt-stream-rds1.log',
                    filemode='w')

class TableConfig:
    """
    表配置信息
    """
    def __init__(self, key: str, topic: str, need_table: bool, complete_regex: bool, regex: str, column_mapping: dict ):
        """
        :param key:表的唯一id
        :param topic  topic名单
        :param need_table  是否需要将表名称作为一个字段写入表,用于解决分库分别问题
        :param complete_regex  是否完全匹配还是正则匹配
        :param regex  匹配表的正则表达式
        :param column_mapping  列的对应关系
        """
        self.key = key
        self.topic = topic
        self.need_table = need_table
        self.complete_regex = complete_regex
        self.regex = regex
        self.column_mapping = column_mapping

class TableConfigReader:
    """
    解析表的配置文件
    """
    def __init__(self, directory_path: str):
        """
        :param directory_path 配置文件的目录
        """
        self.directory_path = directory_path
        # 配置列表
        self.table_config_list: List[TableConfig] = []

    def read(self):
        """
        读取所有的配置文件,转换为配置列表
        """
        entries = os.listdir(self.directory_path)
        # 过滤出所有文件
        files = [entry for entry in entries if
                 os.path.isfile(os.path.join(self.directory_path, entry)) and entry.endswith(".json")]
        logging.info(f"读取配置文件数量:{len(files)}")
        for file in files:
            file_path = os.path.join(self.directory_path, file)
            with open(file_path, 'r', encoding='utf-8') as f:
                content = f.read()
            json_data = json.loads(content)
            self.table_config_list.append(TableConfig(json_data['key'], json_data['topic'], json_data['need_table'], json_data['complete_regex'],  json_data['regex'], json_data['column_mapping']))


class PrefixTrie:
    """
    用于匹配表名称
    """
    def __init__(self, complete_regex_map: Dict[str, TableConfig], not_complete_list:List[TableConfig]):
        """
        :param complete_regex_map 完全匹配的表配置信息字典
        :param not_complete_list 正则匹配的列表
        """
        self.complete_regex_map = complete_regex_map
        self.not_complete_list = not_complete_list

    def search(self, text):
        if text in self.complete_regex_map.keys():
            # 完全匹配
            return self.complete_regex_map[text]
        for data in self.not_complete_list:
            # 正则匹配
            match = re.match(data.regex, text)
            if match:
                return data
        return None


class MysqlConfig:
    """
    MYSQL的连接
    """
    def __init__(self, host:str, port:int, user:str, password:str, service_id:int):
        """
        :param host 数据库的host
        :param port 数据库的port
        :param user 数据库的user
        :param password 数据库的password
        :param service_id 数据库的server_id,  用于binlog同步
        """
        self.host = host
        self.port = port
        self.user = user
        self.password = password
        self.service_id = service_id

class KafkaBinlogStreamer:
    """
    真正的binlog消费
    """
    def __init__(self, kafka_server: str, mysql_config:MysqlConfig, trie_tree: PrefixTrie, aes_key):
        """
        :param kafka_server  kafka的地址
        :param mysql_config  MYSQL的配置信息
        :param trie_tree  名称匹配的信息
        :param aes_key  数据加密的秘钥
        """
        self.producer = self._init_kafka_producer(kafka_server)
        self.mysql_config = mysql_config
        self.stream = None
        self.trie_tree = trie_tree
        self.aes_key = aes_key

    def _init_kafka_producer(self, kafka_server):
        """
        初始化 Kafka Producer
        :param kafka_server kafka的地址
        """
        producer = KafkaProducer(
            bootstrap_servers=kafka_server,
            batch_size=16384,  # 批量发送的大小(字节)
            linger_ms=100,  # 等待时间(毫秒),等待更多消息达到 batch_size
            max_request_size=10485760,  # 最大请求大小(字节)
            acks=1,  # 等待所有副本的确认
            retries=3,  # 重试次数
            value_serializer=lambda v: json.dumps(v, default=self.json_serial, ensure_ascii=False).encode('utf-8')
        )
        logging.info("Kafka producer initialized.")
        return producer

    @staticmethod
    def json_serial(obj):
        """
        JSON serializer for objects not serializable by default json code
        """
        if isinstance(obj, (datetime, date)):
            return obj.strftime('%Y-%m-%d %H:%M:%S')
        if isinstance(obj, Decimal):
            return float(obj)
        if isinstance(obj, bytes):
            return obj.decode('utf-8')
        if isinstance(obj, timedelta):
            # 将 timedelta 类型转换为字符串格式
            return str(obj)
        if isinstance(obj, dict):
            return {
   KafkaBinlogStreamer.json_serial(k): KafkaBinlogStreamer.json_serial(v) for k, v in obj.items()}
            # 处理列表类型
        if isinstance(obj, list):
            return [KafkaBinlogStreamer.json_serial(item) for item in obj]
        logging.warning(f"Type '{obj.__class__}' for '{obj}' not serializable")
        return None

    @staticmethod

    def convert_bytes_keys_to_str(data):
        """
        递归转换字典中的 bytes 键为 str
        """
        if isinstance(data, dict):
            # 将字典中的 bytes 类型的键转换为 str
            return {
   
                (k.decode('utf-8') if isinstance(k, bytes) else k): KafkaBinlogStreamer.convert_bytes_keys_to_str(v)
                for k, v in data.items()
            }
        elif isinstance(data, list):
            # 对列表中的每个元素递归转换
            return [KafkaBinlogStreamer.convert_bytes_keys_to_str(item) for item in data]
        elif isinstance(data, bytes):
            # 对 bytes 类型的值进行转换
            return data.decode('utf-8')
        elif isinstance(data, datetime):
            # 将 datetime 类型转换为 ISO 格式字符串
            return data.strftime('%Y-%m-%d %H:%M:%S')
        else:
            return data

    def build_message(self, binlog_evt, trie_tree: PrefixTrie):
        """
        构建消息
        :param binlog_evt binlog事件
        :param trie_tree 匹配树
        """
        schema = str(f"{getattr(binlog_evt, 'schema', '')}.{getattr(binlog_evt, 'table', '')}")
        table_name = str(f"{getattr(binlog_evt, 'table', '')}")
        # 获取配置
        table_config = trie_tree.search(schema)
        if table_config is None:
            return None
        topic = table_config.topic
        if binlog_evt.event_type == BINLOG.WRITE_ROWS_EVENT_V1:
            # Insert
            data_rows = binlog_evt.rows
            data_list = []
            for data_row in data_rows:
                data_list.append(self._map_columns(self.convert_bytes_keys_to_str(data_row['values']), table_name, table_config, 0))
            return {
   'event': 'INSERT', 'headers': {
   'topic': topic}, 'data_list': data_list}
        elif binlog_evt.event_type == BINLOG.UPDATE_ROWS_EVENT_V1:
            # Update
            data_rows = binlog_evt.rows
            data_list = []
            for data_row in data_rows:
                data_list.append(self._map_columns(self.convert_bytes_keys_to_str(data_row['after_values']), table_name, table_config, 0))
            return {
   'event': 'INSERT', 'headers': {
   'topic': topic}, 'data_list': data_list}
        elif binlog_evt.event_type == BINLOG.DELETE_ROWS_EVENT_V1:
            # Delete
            data_rows = binlog_evt.rows
            data_list = []
            for data_row in data_rows:
                data_list.append(self._map_columns(self.convert_bytes_keys_to_str(data_row['values']), table_name, table_config, 1))
            return {
   'event': 'DELETE', 'headers': {
   'topic': topic}, 'data_list': data_list}
        return None

    @staticmethod
    def _map_columns(values, table_name: str, table_config: TableConfig, op_data: int):
        """
        对列名进行映射
        :param values 数据
        :param table_name 表名称
        :param table_config 表的配置
        :param op_data op操作
        """
        column_mapping = table_config.column_mapping
        need_table = table_config.need_table
        mapped_values = {
   }
        for column, value in values.items():
            # 如果列名在映射字典中,则替换为映射的列名
            if column in column_mapping:
                mapped_column = column_mapping.get(column)
                mapped_values[mapped_column] = value
        if need_table:
            mapped_values['table_name'] = table_name
        mapped_values['__op'] = op_data
        return mapped_values

    def encrypt_data(self, data):
        """
        使用 AES-GCM 加密数据
        :param data 待加密数据
        """
        cipher = AES.new(self.aes_key, AES.MODE_GCM)
        ciphertext, tag = cipher.encrypt_and_digest(data.encode('utf-8'))
        return {
   
            'nonce': cipher.nonce.hex(),
            'ciphertext': ciphertext.hex()  + tag.hex()
        }

    def start_stream(self):
        """
        开始监听 MySQL Binlog 流
        """
        logging.info("Starting binlog stream...")
        mysql_settings = {
   
            'host': self.mysql_config.host,
            'port': self.mysql_config.port,
            'user': self.mysql_config.user,
            'password': self.mysql_config.password,

        }
        self.stream = BinLogStreamReader(
            connection_settings=mysql_settings,
            server_id=self.mysql_config.service_id,
            resume_stream=True,
            blocking=True,
           # only_events=[BINLOG.WRITE_ROWS_EVENT_V1, BINLOG.UPDATE_ROWS_EVENT_V1, BINLOG.DELETE_ROWS_EVENT_V1]
        )

        try:
            for evt in self.stream:
                msg = self.build_message(evt, self.trie_tree)
                if msg:
                    topic = msg['headers']['topic']
                    data_list = msg['data_list']
                    for data_row in data_list:
                        try:
                            self.producer.send(topic, value=self.encrypt_data(json.dumps(data_row,  default=self.json_serial, ensure_ascii=False)))
                        except Exception as e:
                            logging.info(e)
                            logging.info(topic)
                            logging.info(data_row)
                            raise e
        except KeyboardInterrupt:
            logging.info("Binlog stream interrupted by user.")
        finally:
            self.close()

    def close(self):
        """
        关闭资源
        """
        if self.stream:
            self.stream.close()
            logging.info("Binlog stream closed.")
        self.producer.close()
        self.producer.flush()
        logging.info("Kafka producer closed.")


if __name__ == "__main__":
    # 读取表配置
    BASE_PATH = "/opt/py38/data-job-stream"
    CONFIG_PATH = BASE_PATH + "/" + "config/rds1"
    table_config_data_list = TableConfigReader(CONFIG_PATH)
    table_config_data_list.read()

    complete_regex_table_dict = {
   }
    not_complete_regex_table_dict_list = []
    for table_config in table_config_data_list.table_config_list:
        if table_config.complete_regex:
            complete_regex_table_dict[table_config.key] = table_config
        else:
            not_complete_regex_table_dict_list.append(table_config)
    # 构建 Trie 树
    trie = PrefixTrie(complete_regex_table_dict, not_complete_regex_table_dict_list)

    # 配置参数
    KAFKA_SERVER = "ip:19092,ip2:19093,ip3:19094"
    mysql_config = MysqlConfig("*.mysql.rds.aliyuncs.com", 3306, "username",
                               "password", 100)

    # 对称加密的秘钥
    hex_key = "6253c3d*************8b5deba549"
    key_bytes = binascii.unhexlify(hex_key)
    # 创建并启动 Kafka Binlog Streamer
    streamer = KafkaBinlogStreamer(KAFKA_SERVER, mysql_config, trie, key_bytes)
    streamer.start_stream()

脚本中依赖的版本信息

kafka_python==2.0.2
mysql_replication==0.45.1
pycryptodome==3.21.0

七、配套生态脚本

  1. 批量与增量配置文件的生成

在同步一张新表的时候,可以修改改脚本中的RDS数据库的信息,运行该脚本,自动生成各个数据同步步骤的配置文件和脚本信息。

如果 数据库名称:test 表名称为:test_1, StarRocks中表名称为:ods_test_1, 运行该脚本之后会生成如下的文件

  • test.test_1.json 该文件是用于binlog同步的配置文件。
  • mzt_ods_cjm_all.test_1_connect.json 该文件是用于历史数据批量同步的KafkaConnector配置。
  • mzt_ods_cjm_all.test_1_datax_config.json 该文件是用于历史数据批量同步的DataX配置。
  • mzt_ods_cjm_all.test_1_datax_shell.sh 该文件是用于执行DataX任务的启动脚本。
  • mzt_ods_cjm_stream.ods_test_1-connect.json 该文件是用于增量数据同步的KafkaConnector配置。
  • ods_test_1_create_table.sql 该文件是用于在StarRocks中建表的SQL脚本文件。
import os
import shutil
import pymysql
import re
import json

class MySQLMATEDATA():
    """
    mysql 列的元数据信息
    """
    def __init__(self, column_name: str, is_nullable: str, data_type: str,character_maximum_length:
                 int,column_key: int, numeric_precision: int, comment: str):
        """
        初始化
        :param column_name 列名称
        :param is_nullable 是否可以为空
        :param data_type 字段类型
        :param character_maximum_length 字符最大长度
        :param column_key 键
        :param numeric_precision 数字精度
        :param comment 注释
        """
        self.column_name = column_name
        self.new_column_name = MySQLMATEDATA.camel_to_snake(self.column_name)
        self.is_nullable = True if is_nullable == 'NO' else False
        self.data_type = data_type
        self.character_maximum_length = character_maximum_length
        self.column_key = column_key
        self.numeric_precision = numeric_precision
        self.is_primary_key = True if column_key == 'PRI' else False
        self.comment = comment

    def transform_to_starrcocks(self) -> str:
        """
        转换为StarRocks的列
        :return: StarRocks的列
        """
        column_str = self.new_column_name
        if self.data_type == 'timestamp':
            column_str += ' DATETIME '
        else:
            if self.character_maximum_length is not None:
                column_str += ' ' + self.data_type + '( ' + str(self.character_maximum_length * 3) + ") "
            elif self.numeric_precision is not None:
                column_str += ' ' + self.data_type + '( ' + str(self.numeric_precision + 1) + ') '
            else:
                column_str += ' ' + self.data_type + ' '
        if self.is_primary_key:
            column_str += ' NOT NULL '
        if self.comment is not None:
            column_str += ' COMMENT "' + self.comment + '"'
        return column_str + ','

    def transform_to_datax(self) -> str:
        """
        转换列名称为 DATAX 需要的列
        :return: 新的列
        """
        type  = str(self.data_type).lstrip().lower()
        if type == 'datetime' or type == 'timestamp':
            return 'DATE_FORMAT('+ self.column_name + ', \'%Y-%m-%d %H:%i:%s\') AS ' + self.new_column_name
        elif  type == 'date' :
            return 'DATE_FORMAT(' + self.column_name + ', \'%Y-%m-%d\') AS ' + self.new_column_name
        return self.column_name

    @staticmethod
    def camel_to_snake(name):
        """
        在大写字母前面加上下划线,并转换为小写
        :param name: 列名称
        :return: 新的列名称
        """
        snake_case = re.sub(r'(?<!^)(?=[A-Z])', '_', name).lower()
        return snake_case


class ConfigGeneral(object):
    """
    数据同步相关的配置文件生成
    """
    def __init__(self, database: str, table: str, topic: str, n_table: str, s_topic: str, mysql_host: str, mysql_port: int,
                 mysql_user: str, mysql_passwd: str):
        """
           初始化
           :param database mysql数据库名称
           :param table mysql表名称
           :param topic 批量同步的topic名称
           :param n_table StarRocks表名称
           :param s_topic 流式同步的topic的名称
           :param mysql_host mysql的host
           :param mysql_port mysql的port
           :param mysql_user mysql的用户名
           :param mysql_passwd mysql的密码
        """
        self.database = database
        self.table = table
        self.topic = topic
        self.n_table = n_table
        self.s_topic = s_topic
        self.mysql_host = mysql_host
        self.mysql_port = mysql_port
        self.mysql_user = mysql_user
        self.mysql_passwd = mysql_passwd
        self.column_list = []
        self.jdbc_url = 'jdbc:mysql://{}:{}/{}?characterEncoding=utf-8&useSSL=false&tinyInt1isBit=false'.format(self.mysql_host, self.mysql_port, self.database)

    def search_column_name(self):
        """
        查询mysql中表的元数据
        :return: 元数据列表
        """
        sql ="""SELECT 
                    COLUMN_NAME, 
                    IS_NULLABLE,
                    DATA_TYPE,
                    CHARACTER_MAXIMUM_LENGTH,
                    COLUMN_KEY, 
                    NUMERIC_PRECISION, 
                    COLUMN_COMMENT
                FROM information_schema.`COLUMNS` 
                WHERE table_schema='{}' AND table_name = '{}'  
                ORDER BY ORDINAL_POSITION ASC""".format(self.database, self.table)
        table_name_list = []
        conn = pymysql.connect(host=self.mysql_host,
                               port=self.mysql_port,
                               user=self.mysql_user,
                               passwd=self.mysql_passwd,
                               db=self.database,
                               charset='utf8',
                               connect_timeout=200,
                               autocommit=True,
                               read_timeout=2000
                               )
        with conn.cursor() as cursor:
            cursor.execute(query=sql)
            while 1:
                res = cursor.fetchone()
                if res is None:
                    break
                table_name_list.append(MySQLMATEDATA(res[0], res[1], res[2], res[3], res[4], res[5], res[6]))
        self.column_list = table_name_list
        conn.close()

    def create_all_datax_config(self) -> str:
        """
        生成DATAX的配置文件
        :return: 配置文件地址
        """
        datax_config ={
   
            "job":{
   
                "setting" :{
   
                    "speed":{
   
                        "channel":1
                    }
                },
                "content": [
                    {
   
                        "reader": {
   
                            "name": "mysqlreader",
                            "parameter": {
   
                                "username": "",
                                "password": "",
                                "column": [],
                                "connection": [
                                    {
   
                                        "table": [],
                                        "jdbcUrl": []
                                    }
                                ],
                            }
                        },
                        "writer": {
   
                            "name": "kafkawriter",
                            "parameter": {
   
                                "bootstrapServers": "IP1:19092,IP2:19093,IP3:19094",
                                "topic": "",
                                "ack": "all",
                                "batchSize": 1000,
                                "retries": 3,
                                "keySerializer": "org.apache.kafka.common.serialization.StringSerializer",
                                "valueSerializer": "org.apache.kafka.common.serialization.StringSerializer",
                                "fieldDelimiter": ",",
                                "writeType": "json",
                                "topicNumPartition": 1,
                                "topicReplicationFactor": 1,
                                "encryptionKey": "6253c3************a549",
                                "column": []
                            }
                        }
                    }
                ]
            }
        }
        new_column_name_list =[]
        new_column_name_list1 =[]
        for column in self.column_list:
            new_column_name = column.new_column_name
            new_column_name_list.append(column.transform_to_datax())
            new_column_name_list1.append(new_column_name)
        datax_config['job']['content'][0]['reader']['parameter']['column'] = new_column_name_list
        datax_config['job']['content'][0]['writer']['parameter']['column'] = new_column_name_list1
        datax_config['job']['content'][0]['reader']['parameter']['connection'][0]['table'] = [self.table]
        datax_config['job']['content'][0]['reader']['parameter']['connection'][0]['jdbcUrl'] = [self.jdbc_url]
        datax_config['job']['content'][0]['writer']['parameter']['topic'] = self.topic
        with open('config/' + self.topic + '_datax_config.json', 'w', encoding='utf-8') as f:
            f.write(json.dumps(datax_config, ensure_ascii=False, indent=2))
        return self.topic + '_datax_config.json'

    def create_all_datax_shell(self, config_path: str):
        """
        生成DATAX的执行脚本文件
        :param config_path: 配置文件的路径
        :return: 脚本文件路径
        """
        text = """python3 /opt/datax-k/bin/datax.py {} """.format(config_path)
        with open('config/' + self.topic + '_datax_shell.sh', 'w', encoding='utf-8') as f:
            f.write(text)
        return self.topic + '_datax_shell.sh'

    def create_all_connect(self) -> str:
        """
        生成全量同步的kafka-connect的配置文件
        :return:  配置文件路径
        """
        connect_config = {
   
            "name": "",
            "config": {
   
                "connector.class": "com.starrocks.connector.kafka.StarRocksSinkConnector",
                "topics": "",
                "key.converter": "org.apache.kafka.connect.storage.StringConverter",
                "value.converter": "org.apache.kafka.connect.storage.StringConverter",
                "key.converter.schemas.enable": "true",
                "value.converter.schemas.enable": "false",
                "starrocks.http.url": "IP1:8050,IP2:8050,IP3:8050",
                "starrocks.topic2table.map": "",
                "starrocks.username": "",
                "starrocks.password": "",
                "starrocks.database.name": "ods_cjm",
                "sink.properties.strip_outer_array": "true",
                "sink.properties.columns": "",
                "sink.properties.jsonpaths": "",
                "transforms": "decrypt",
                "transforms.decrypt.type": "com.starrocks.connector.kafka.transforms.DecryptJsonTransformation",
                "transforms.decrypt.secret.key": "6253****************a549"
            }
        }
        connect_config['name'] = self.topic + "-connect"
        connect_config['config']['topics'] = self.topic
        connect_config['config']['starrocks.topic2table.map'] = self.topic + ":" + self.n_table
        connect_config['config']['sink.properties.columns'] = ",".join(list(map(lambda x: x.new_column_name ,self.column_list)))
        connect_config['config']['sink.properties.jsonpaths'] = '['  + (",".join(list(map(lambda x : ("\"$." + x.column_name  + "\"") ,self.column_list)))) + "]"
        with open('config/' + self.topic + '_connect.json', 'w', encoding='utf-8') as f:
            f.write(json.dumps(connect_config, ensure_ascii=False, indent=2))
        return self.topic + '_connect.json'

    def search_table_create_sql(self):
        """
        生成StarRocks的建表语句
        :return: 文件路径
        """
        table_sql_list = " CREATE TABLE " + self.n_table +" (" + "\n"
        primary_key = ''
        for column in self.column_list:
            table_sql_list  = table_sql_list + column.transform_to_starrcocks() +"\n"
            if column.is_primary_key:
                primary_key = column.column_name
        table_sql_list = table_sql_list +")\n"
        table_sql_list = table_sql_list +"PRIMARY KEY ("+ primary_key+")\n"
        table_sql_list = table_sql_list +"DISTRIBUTED BY HASH ("+ primary_key+");\n"
        with open('config/' +  self.n_table + '_create_table.sql', 'w', encoding='utf-8') as f:
            f.write(table_sql_list)
        return self.n_table + '_create_table.sql'

    def create_stream_config(self):
        """
        生成mysql binlog同步的配置文件
        :return: 文件路径
        """
        config = {
   
            "key": "",
            "topic": "",
            "need_table": False,
            "complete_regex": True,
            "regex": "",
            "column_mapping": {
   }
        }
        column_mapping = {
   }
        for column in self.column_list:
            column_mapping[column.column_name] = column.new_column_name
        config['column_mapping'] = column_mapping
        config['key'] = self.database + '.' + self.table
        config['topic'] = self.s_topic
        with open('config/' + self.database + '.' + self.table + '.json', 'w', encoding='utf-8') as f:
            f.write(json.dumps(config, ensure_ascii=False, indent=2))

    def create_stream_connect(self):
        """
        生成流式同步的kafka-connector的配置文件
        :return: 文件路径
        """
        connect_config = {
   
            "name": "",
            "config": {
   
                "connector.class": "com.starrocks.connector.kafka.StarRocksSinkConnector",
                "topics": "",
                "key.converter": "org.apache.kafka.connect.storage.StringConverter",
                "value.converter": "org.apache.kafka.connect.storage.StringConverter",
                "key.converter.schemas.enable": "true",
                "value.converter.schemas.enable": "false",
                "starrocks.http.url": "IP1:8050,IP2:8050,IP3:8050",
                "starrocks.topic2table.map": "",
                "starrocks.username": "",
                "starrocks.password": "",
                "starrocks.database.name": "ods_cjm",
                "sink.properties.strip_outer_array": "true",
                "sink.properties.columns": "",
                "sink.properties.jsonpaths": "",
                "transforms": "decrypt",
                "transforms.decrypt.type": "com.starrocks.connector.kafka.transforms.DecryptJsonTransformation",
                "transforms.decrypt.secret.key": "6253********549"
            }
        }
        connect_config['name'] = self.s_topic + "-connect"
        connect_config['config']['topics'] = self.s_topic
        connect_config['config']['starrocks.topic2table.map'] = self.s_topic + ":" + self.n_table
        connect_config["config"]["sink.properties.columns"] = ",".join(list(map(lambda x : x.new_column_name ,self.column_list))) +",__op"
        connect_config["config"]["sink.properties.jsonpaths"] = '['  + (",".join(list(map(lambda x : ("\"$." + x.new_column_name  + "\"") ,self.column_list)))) + ",\"$.__op\"]"
        with open('config/' + self.s_topic + '-connect.json', 'w', encoding='utf-8') as f:
            f.write(json.dumps(connect_config, ensure_ascii=False, indent=2))
        return self.s_topic + '_connect.json'


def delete_all_files_in_folder(folder_path):
    """
    删除某个文件夹下面的所有文件
    :param folder_path: 文件夹路径
    :return: NONE
    """
    # 检查文件夹是否存在
    if not os.path.exists(folder_path):
        print("文件夹不存在")
        return

    # 遍历文件夹中的所有文件和子文件夹
    for filename in os.listdir(folder_path):
        file_path = os.path.join(folder_path, filename)

        try:
            # 如果是文件,则删除
            if os.path.isfile(file_path) or os.path.islink(file_path):
                os.remove(file_path)
                print(f"删除文件: {file_path}")
            # 如果是子文件夹,则删除子文件夹及其内容
            elif os.path.isdir(file_path):
                shutil.rmtree(file_path)
                print(f"删除文件夹及其内容: {file_path}")
        except Exception as e:
            print(f"删除时出错: {file_path},错误信息: {e}")

if __name__ == '__main__':
    delete_all_files_in_folder("config")
    DATABASE = 'hydra_marketing'
    TABLE ='t_data_overview'
    TOPIC ='mzt_ods_cjm_all.' + TABLE
    NEW_TABLE = 'ods_marketing_t_data_overview'
    STREAM_TOPIC = "mzt_ods_cjm_stream." + NEW_TABLE

    MYSQL_HOST = ""
    MYSQL_PORT = 3306
    USER_NAME = ""
    PASSWD=""

    config = ConfigGeneral(DATABASE,TABLE, TOPIC, NEW_TABLE, STREAM_TOPIC, MYSQL_HOST, MYSQL_PORT, USER_NAME, PASSWD)
    config.search_column_name()
    config.search_table_create_sql()
    config_path = config.create_all_datax_config()
    config.create_all_datax_shell(config_path)
    config.create_all_connect()
    config.create_stream_config()
    config.create_stream_connect()
  1. Kafka-Connector操作脚本

该脚本包含了Kafka Connector操作的各个API,可以很方便的进行Kafka Connector相关的操作或者各个任务的状态查询。

import json
import requests
from typing import List, Mapping


class KafkaConnectAll:
    """
    KAFKA Connect 相关操作
    """
    def __init__(self, base_url: str):
        """
        初始化
        :param base_url: kafka-connector的地址
        """
        self.base_url = base_url

    def query_all(self) -> List[str]:
        """
        查询全部的connector
        :return: connector名称列表
        """
        url = self.base_url + '/connectors'
        data_json = requests.get(url).json()
        for data in data_json:
            print(data)
        return data_json

    def delete_connector(self, connector_name: str):
        """
        删除指定的connector
        :param connector_name: connector名称
        :return: None
        """
        url = self.base_url + '/connectors/' + connector_name
        requests.delete(url)

    def query_status(self, connector_name: str) -> Mapping[str, str]:
        """
        查询指定connector的状态
        :param connector_name: connector名称
        :return: 状态信息
        """
        url = self.base_url + '/connectors/' + connector_name + '/status'
        result = requests.get(url)
        connect_state = result.json()['connector']['state']
        task_states = []
        for task in result.json()['tasks']:
            task_states.append({
   
                'id': task['id'],
                'state': task['state'],
            })

        print("connector状态", connect_state)
        print("tasks状态", task_states)
        return {
   
            "connector_status": connect_state,
            "task_states": task_states
        }

    def create_connector(self, connector_config: json):
        """
        创建connector
        :param connector_config: 配置文件
        :return: NONE
        """
        url = self.base_url + '/connectors'
        headers = {
   "Content-Type": "application/json"}
        try:
            # 发送 POST 请求创建 Connector
            response = requests.post(url, headers=headers, data=json.dumps(connector_config))
            if response.status_code == 201:
                print("Connector 创建成功")
                print(response.json())
            elif response.status_code == 409:
                print("Connector 已经存在")
            else:
                print(f"Connector 创建失败,状态码: {response.status_code}")
                print(response.json())
        except Exception as e:
            print(f"请求失败: {e}")

    def query_connector(self, connector_name: str) -> json:
        """
        查询指定的connector
        :param connector_name: connector名称
        :return: 内容
        """
        url = self.base_url + '/connectors/' + connector_name
        result = requests.get(url).json()
        print(json.dumps(result, indent=4))
        return result

    def query_connector_config(self, connector_name: str) -> json:
        """
        查询指定connector的配置文件
        :param connector_name: connector名称
        :return: 配置
        """
        url = self.base_url + '/connectors/' + connector_name + "/config"
        result = requests.get(url).json()
        print(json.dumps(result, indent=4))
        return result

    def update_connector_config(self, connector_name: str, connector_config: json):
        """
        修改指定connector的配置
        :param connector_name: 指定connector名称
        :param connector_config: 配置
        :return: NONE
        """
        url = self.base_url + '/connectors/' + connector_name + "/config"
        headers = {
   "Content-Type": "application/json"}
        try:
            # 发送 POST 请求创建 Connector
            response = requests.put(url, headers=headers, data=json.dumps(connector_config))
            if response.status_code == 201:
                print("Connector 更新成功")
                print(response.json())
            elif response.status_code == 409:
                print("Connector 已经存在")
            else:
                print(f"Connector 更新失败,状态码: {response.status_code}")
                print(response.json())
        except Exception as e:
            print(f"请求失败: {e}")

    def query_connectors_task(self, connector_name: str) -> List[int]:
        """
        查询指定connector的task列表
        :param connector_name: 指定connector名称
        :return: taskId列表
        """
        url = self.base_url + '/connectors/' + connector_name + '/tasks'
        result = requests.get(url).json()
        print(json.dumps(result, indent=4))
        task_id = []
        for task in result:
            task_id.append(task['id']['task'])
        return task_id

    def query_connectors_tasks_status(self, connector_name: str, task_id: int) -> json:
        """
        查询task的状态
        :param connector_name: 指定connector的名称
        :param task_id: task id
        :return: 结果
        """
        url = self.base_url + '/connectors/' + connector_name + '/tasks/' + str(task_id) + '/status'
        result = requests.get(url).json()
        print(json.dumps(result, indent=4))
        return result

    def pause_connector(self, connector_name: str):
        """
        暂停connector
        :param connector_name: connector 名称
        :return: NONE
        """
        url = self.base_url + '/connectors/' + connector_name + '/pause'
        requests.put(url).json()

    def resume_connector(self, connector_name: str):
        """
        恢复
        :param connector_name: connector名称
        :return: NONE
        """
        url = self.base_url + '/connectors/' + connector_name + '/resume'
        requests.put(url).json()

    def restart_connector(self, connector_name: str):
        """
        重启
        :param connector_name: connector名称
        :return: NONE
        """
        url = self.base_url + '/connectors/' + connector_name + '/restart'
        requests.post(url).json()

    def restart_connector_task(self, connector_name: str, task_id: int):
        """
        重启task
        :param connector_name: connector名称
        :param task_id: task id
        :return: NONE
        """
        url = self.base_url + '/connectors/' + connector_name + '/tasks/' + str(task_id) + '/restart'
        requests.post(url).json()


if __name__ == '__main__':
    base_url = 'http://IP:8083'
    kafka_connector_all = KafkaConnectAll(base_url)
    kafka_connector_all.query_connectors_tasks_status('user_sys_org-connect', 0)
  1. StarRocks表最新日期检测脚本

该脚本用于检测StarRocks各个表中的最新的数据的时间,可以用于判断当前数据同步是否正常时使用。

import pymysql
from typing import Tuple
import json


class StarRocksTableCheck:
    """
    starrocks表数据最新日期检测
    """
    def __init__(self, host: str, port: int, user: str, password: str, database: str):
        """
        初始化
        :param host: 数据库host
        :param port: 数据库端口
        :param user: 数据源用户名称
        :param password: 数据库用户密码
        :param database: 数据库名称
        """
        self.host = host
        self.port = port
        self.user = user
        self.password = password
        self.database = database
        # 数据库连接
        self.conn = None

    def connect(self) -> None:
        """
        创建连接
        :return: None
        """
        self.conn = pymysql.connect(host=self.host,
                               port=self.port,
                               user=self.user,
                               passwd=self.password,
                               db=self.database,
                               charset='utf8',
                               connect_timeout=200,
                               autocommit=True,
                               read_timeout=2000
                               )

    def close(self) -> None:
        """
        关闭数据库连接
        :return: NONE
        """
        self.conn.close()

    def query(self, table: str, time_filed: str) -> Tuple[str, str]:
        """
        查询最大日期
        :param table: 数据表名称
        :param time_filed: 时间字段名称
        :return: 表名称-最新时间
        """
        sql = "SELECT MAX({}) AS MAX_TIME FROM {}".format(time_filed, table)
        with self.conn.cursor() as cursor:
            cursor.execute(query=sql)
            while 1:
                res = cursor.fetchone()
                if res is None:
                    break
                print('{} {}'.format(table, res[0]))
                return str(res[0]), str(res[1])


class ReaderFile:
    """
    读取文件
    """
    def __init__(self,file_path: str):
        """
        初始化
        :param file_path: 文件路径
        """
        self.file_path = file_path

    def read_file_content(self) -> str:
        """
        读取文件内容
        :return: 文件内容
        """
        with open(self.file_path, 'r', encoding='utf-8') as file:
            content = file.read()
        return content


if __name__ == '__main__':
    starRocksTableCheck = StarRocksTableCheck("ip", 9030, "username", "password", "ods_cjm")
    starRocksTableCheck.connect()
    try:
        content = ReaderFile(r'E:\pycode\python_scripts_new\超级码\stream\config\starrocks_table.json').read_file_content()
        for table in json.loads(content):
            table_name = table['TABLE_NAME']
            column_name = table['COLUMN_NAME']
            starRocksTableCheck.query(table_name, column_name)
    finally:
        starRocksTableCheck.close()

表信息的配置文件,配置需要检测的表和对应的时间字段。

[
  {
   
    "TABLE_NAME": "ods_codemanager_codeapply",
    "COLUMN_NAME": "create_date"
  },
  {
   
    "TABLE_NAME": "ods_t_integral_account",
    "COLUMN_NAME": "update_time"
  }
]
  1. 增量同步任务检测脚本

该脚本用于检测当前的数据同步任务脚本是否正常运行,未运行可以直接启动脚本,可以配置crontab实现服务的异常终止直接启动操作,可以加入消息告警。

#!/bin/bash

# 要检测的 Python 脚本列表
PROCESS_LIST=("mzt-transform-stream-kafka-rds1.py" "mzt-transform-stream-kafka-rds2.py")

# 启动命令列表
START_CMD_LIST=(
    "nohup python3 mzt-transform-stream-kafka-rds1.py > /opt/py38/data-job-stream/nohup1.out 2>&1 &"
    "nohup python3 mzt-transform-stream-kafka-rds2.py > /opt/py38/data-job-stream/nohup2.out 2>&1 &"
)

# 目录
BASE_PATH="/opt/py38/data-job-stream"
# 虚拟环境路径
VENV_PATH="/opt/py38/bin/activate"

# 检测进程是否存在
check_process() {
    local process_name="$1"
    if pgrep -f "$process_name" > /dev/null; then
        echo "$(date) - 进程 '$process_name' 正在运行。"
        return 0
    else
        echo "$(date) - 进程 '$process_name' 未运行。"
        return 1
    fi
}

# 启动进程
start_process() {
    local start_cmd="$1"
    echo "$(date) - 正在启动命令: $start_cmd"
    # 进入目录
    cd "$BASE_PATH" || exit 1
    # 激活虚拟环境
    source "$VENV_PATH"
    # 执行启动命令
    eval "$start_cmd"
    if [ $? -eq 0 ]; then
        echo "$(date) - 命令启动成功。"
    else
        echo "$(date) - 命令启动失败!"
    fi
}

# 主逻辑
for index in "${!PROCESS_LIST[@]}"; do
    process_name="${PROCESS_LIST[$index]}"
    start_cmd="${START_CMD_LIST[$index]}"

    echo "----- 检测进程:$process_name -----"
    if ! check_process "$process_name"; then
        start_process "$start_cmd"
    fi
done
  1. 增量同步的配置文件示例

这是一个用于增量数据同步的配置文件,其配置了具体的某张表的增量数据同步规则。

{
   
  "key": "app.device",
  "topic": "mzt_ods_cjm_stream.ods_device",
  "need_table": false,
  "complete_regex": true,
  "regex": "",
  "column_mapping": {
   
    "Id": "id",
    "CompanyName": "company_name",
    "CompanyId": "company_id",
    "SecretKey": "secret_key",
    "Brand": "brand",
    "ModelType": "model_type",
    "Enable": "enable",
    "CreateTime": "create_time",
    "UpdateTime": "update_time"
  }
}
KEY 说明
key 表的唯一id,用于匹配binlog日志,组成为库.表 或者 模糊匹配开头
topic 数据写入的kafka的topic名称
need_table 列中是否需要加入表明,如何为true,则列中会加入一个字段table_name,值为当前RDS中表的名称,用于解决分库分表的问题
complete_regex 是否完整匹配表名称,如果为true,则根据key完整匹配表名称,用于解决分库分表的问题, 如果为false,则根据regex的值进行正常匹配
regex 匹配binlog表的正则表达式
column_mapping 表的列字段的映射,key为RDS中表字段名称。value为StarRocks中表字段的名称
  1. kafkaConnector的配置示例
{
   
    "name": "mzt_ods_cjm_stream.ods_device-connect",
    "config": {
   
        "connector.class": "com.starrocks.connector.kafka.StarRocksSinkConnector",
        "topics": "mzt_ods_cjm_stream.ods_device",
        "key.converter": "org.apache.kafka.connect.storage.StringConverter",
        "value.converter": "org.apache.kafka.connect.storage.StringConverter",
        "key.converter.schemas.enable": "true",
        "value.converter.schemas.enable": "false",
        "starrocks.http.url": "IP1:8050,IP2:8050,IP3:8050",
        "starrocks.topic2table.map": "mzt_ods_cjm_stream.ods_device:ods_device",
        "starrocks.username": "",
        "starrocks.password": "",
        "starrocks.database.name": "ods_cjm",
        "sink.properties.strip_outer_array": "true",
        "sink.properties.columns": "id,company_name,company_id,secret_key,brand,model_type,enable,create_time,update_time,__op",
        "sink.properties.jsonpaths": "[\"$.id\",\"$.company_name\",\"$.company_id\",\"$.secret_key\",\"$.brand\",\"$.model_type\",\"$.enable\",\"$.create_time\",\"$.update_time\",\"$.__op\"]",
        "transforms": "decrypt",
        "transforms.decrypt.type": "com.starrocks.connector.kafka.transforms.DecryptJsonTransformation",
        "transforms.decrypt.secret.key": "6253******a549"
    }
KEY 说明
name kafka connector的唯一名称
config.connector.class 连接器 默认值
config.topics 要消费的topic列表,多个使用,分隔
config.key.converter key的转换器,保持默认
config.value.converter value的转换器,保持默认
config.key.converter.schemas.enable 是否需要转换key
config.value.converter.schemas.enable 是否需要转换value
config.starrocks.http.url StarRocks用于streamLoad的地址
config.starrocks.topic2table.map topic与表的映射, 格式为 topic名称:表名, 多个直接使用,分隔
config.starrocks.username StarRocks的用户名
config.starrocks.password StarRocks的密码
config.starrocks.database.name StarRocks数据库的名称
config.sink.properties.strip_outer_array 是否展开JSON数组
config.sink.properties.columns 列字段的列表
config.sink.properties.jsonpaths JSON字段的列表,可列字段的列表一一对应
config.transforms 数据的转换器
config.transforms.decrypt.type 转换器的实现类
config.transforms.decrypt.secret.key 数据解密的秘钥

八、备注

  1. python-mysql-replication python实现的用于binlog同步的库。
  2. starrocks-connector-for-kafka Kafka Connector是StarRocks数据源连接器
  3. DataX 批量数据同步工具
  4. kafka-console-ui Kakfa可视化控制台
  5. StarRocks-kafka-Connector 通过kafkaConnector导入数据到StarRocks
  6. StreamLoad实现数据增删改
  7. Kafka Connector的API列表
方法 路径 说明
GET /connectors 返回活动连接器的列表
POST /connectors 创建一个新的连接器; 请求主体应该是包含字符串name字段和config带有连接器配置参数的对象字段的JSON对象
GET /connectors/{name} 获取有关特定连接器的信息
GET /connectors/{name}/config 获取特定连接器的配置参数
PUT /connectors/{name}/config 更新特定连接器的配置参数
GET /connectors/{name}/status 获取连接器的当前状态,包括连接器是否正在运行,失败,已暂停等,分配给哪个工作者,失败时的错误信息以及所有任务的状态
GET /connectors/{name}/tasks 获取当前为连接器运行的任务列表
GET /connectors/{name}/tasks/{taskid}/status 获取任务的当前状态,包括如果正在运行,失败,暂停等,分配给哪个工作人员,如果失败,则返回错误信息
PUT /connectors/{name}/pause 暂停连接器及其任务,停止消息处理,直到连接器恢复
PUT /connectors/{name}/resume 恢复暂停的连接器(或者,如果连接器未暂停,则不执行任何操作)
POST /connectors/{name}/restart 重新启动连接器(通常是因为失败)
POST /connectors/{name}/tasks/{taskId}/restart 重启个别任务(通常是因为失败)
DELETE /connectors/{name} 删除连接器,停止所有任务并删除其配置
  1. 加密算法参考
加密类型 推荐算法 优点 缺点 适用场景
对称加密 AES-GCM, ChaCha20 高效,支持硬件加速 需要安全管理密钥 大数据量加密、文件加密、流加密
非对称加密 RSA, ECDSA 无需共享密钥,高安全性 速度慢,不适合大数据加密 密钥交换、数字签名
流加密 ChaCha20 高效,低延迟 不适合文件加密 实时通信、视频流加密
哈希算法 SHA-256, BLAKE3 不可逆,速度快 不能用于加解密 数据校验、数字签名

九、踩坑记录

  1. python虚拟环境pip报错,没有SSL模块。

解决:使用支持http的pip源进行安装

pip3 install pymysql -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
  1. DATAX同步时间戳字段,Kafka中为数字,无法写入StarRocks的datetime类型字段中。

解决:在DATAX的同步字段映射中,使用DATA_FORMAT将其转换为字符串。

"column": [
      "id",
      "name",
      "DATE_FORMAT(timestamp_column, '%Y-%m-%d %H:%i:%s') AS timestamp_column"
],
  1. AES-GCM在python端和Java端的实现问题。

解决:在python中加密会生成(nonce, chiphertext, tag)三元组信息,但是Java中解密会报错,在python中将 ciphertext和tag拼接起来,在Java中可以直接解密。

def encrypt_data(self, data):
    """使用 AES-GCM 加密数据"""
    cipher = AES.new(self.aes_key, AES.MODE_GCM)
    ciphertext, tag = cipher.encrypt_and_digest(data.encode('utf-8'))
    return {
   
        'nonce': cipher.nonce.hex(),
        'ciphertext': ciphertext.hex()  + tag.hex()
    }
public String decrypt(String encryptedData) throws Exception {
   
    JSONObject jsonMessage = JSONObject.parseObject(encryptedData);
    // 解析密文、认证标签和 IV
    byte[] ciphertext = hexStringToByteArray(jsonMessage.getString("ciphertext"));
    byte[] nonce = hexStringToByteArray(jsonMessage.getString("nonce"));
    return decryptData(ciphertext, nonce);
}
  1. BigDecimal字段类型,starrocks-connector-for-kafka无法解析报错。

解决:在starrocks-connector-for-kafka中进行解密的时候,FastJSON配置将BigDecimal转换为Double类型。

 public R apply(R record) {
   
        if (record.value() == null) {
   
            return record;
        }
        String value = (String) record.value();
        try {
   
            String newValue = aesEncryption.decrypt(value);
            // 转换BigDecimal为Double
            JSONObject jsonObject = JSON.parseObject(newValue, JSONReader.Feature.UseBigDecimalForDoubles);
            return record.newRecord(record.topic(), record.kafkaPartition(), record.keySchema(), record.key(), null, jsonObject, record.timestamp());
        } catch (Exception e) {
   
            return record;
        }
    }
  1. 自定义打包的starrocks-connector-for-kafka,kafka Connector无法加载。

解决:必须使用Java8进行打包,使用了Java21打包,导致无法加载。

  1. 使用最新版的python-mysql-replication读取binlog,解析不到表字段。

解决:不要使用最新版本,使用0.45.1版本,可参考:issue#612

  1. python3.6无法运行python-mysql-replication。

解决:python-mysql-replication不支持python3.6,至少需要3.7版本,本项目使用3.8.4版本

  1. python JSON转换不支持byte,日期格式。

解决:自定义python的JSON转换格式。

def convert_bytes_keys_to_str(data):
    if isinstance(data, dict):
        # 将字典中的 bytes 类型的键转换为 str
        return {
   
            (k.decode('utf-8') if isinstance(k, bytes) else k): KafkaBinlogStreamer.convert_bytes_keys_to_str(v)
            for k, v in data.items()
        }
    elif isinstance(data, list):
        # 对列表中的每个元素递归转换
        return [KafkaBinlogStreamer.convert_bytes_keys_to_str(item) for item in data]
    elif isinstance(data, bytes):
        # 对 bytes 类型的值进行转换
        return data.decode('utf-8')
    elif isinstance(data, datetime):
        # 将 datetime 类型转换为 ISO 格式字符串
        return data.strftime('%Y-%m-%d %H:%M:%S')
    else:
        return data
  1. 设置python-mysql-replication的only_events导致消费不到任何binlog。

解决:经过测试,最终舍弃该参数的配置。

  1. 脚本运行过程中占用内存过大,导致其被系统kill

解决:可以手动触发GC垃圾回收,主动回收释放内存

gc.collect()

十、目前数据同步情况

指标KEY 指标值
RDS实例数 2
同步逻辑表数量 56
同步物理表数量 5274
数据延迟 1分钟以内
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
8月前
|
存储 关系型数据库 对象存储
|
5月前
|
关系型数据库 MySQL 数据库
RDS MySQL灾备服务协同解决方案构建问题之数据库备份数据的云上云下迁移如何解决
RDS MySQL灾备服务协同解决方案构建问题之数据库备份数据的云上云下迁移如何解决
|
7月前
|
分布式计算 DataWorks 关系型数据库
DataWorks产品使用合集之当需要将数据从ODPS同步到RDS,且ODPS表是二级分区表时,如何同步所有二级分区的数据
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
70 7
|
8月前
|
消息中间件 关系型数据库 Kafka
实时计算 Flink版产品使用合集之使用DTS从RDSMySQL数据库同步数据到云Kafka,增量同步数据延迟时间超过1秒。如何诊断问题并降低延迟
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
8月前
|
关系型数据库 OLAP Linux
ADB PG最佳实践之高效复制数据到RDS PG
ADB PG是一个经典MPP数据库,长项在于查询分析处理,面对客户联机分析和联机交易(HTAP)场景就显得力不从心,我们在某银行核心系统DB2 for LUW迁移到ADB PG时就遇到类似问题,因此我们提出ADB PG+RDS PG混搭技术架构,来解决客户此类HTAP需求。该混搭架构的精髓在于扬长避短,充分发挥分析型数据库和交易型数据库的长处和特性,分析型数据库专注于数据加工跑批场景,然后批量加工的结果数据卸载到RDS PG,通过RDS PG对外提供高并发对客交易服务。
296 0
ADB PG最佳实践之高效复制数据到RDS PG
|
14天前
|
运维 关系型数据库 MySQL
自建数据库迁移到云数据库RDS
本次课程由阿里云数据库团队的凡珂分享,主题为自建数据库迁移至云数据库RDS MySQL版。课程分为四部分:1) 传统数据库部署方案及痛点;2) 选择云数据库RDS MySQL的原因;3) 数据库迁移方案和产品选型;4) 线上活动与权益。通过对比自建数据库的局限性,介绍了RDS MySQL在可靠性、安全性、性价比等方面的优势,并详细讲解了使用DTS(数据传输服务)进行平滑迁移的步骤。此外,还提供了多种优惠活动信息,帮助用户降低成本并享受云数据库带来的便利。
|
29天前
|
安全 关系型数据库 MySQL
体验自建数据库迁移到云数据库RDS,领取桌面置物架!
「技术解决方案【Cloud Up 挑战赛】」正式开启!本方案旨在帮助用户将自建数据库平滑迁移至阿里云RDS MySQL,享受稳定、高效、安全的数据库服务,助力业务快速发展。完成指定任务即可赢取桌面置物架等奖励,限量供应,先到先得。活动时间:2024年12月3日至12月31日16点。
|
5月前
|
SQL 关系型数据库 数据库
数据库空间之谜:彻底解决RDS for SQL Server的空间难题
【8月更文挑战第16天】在管理阿里云RDS for SQL Server时,合理排查与解决空间问题是确保数据库性能稳定的关键。常见问题包括数据文件增长、日志文件膨胀及索引碎片累积。利用SQL Server的动态管理视图(DMV)可有效监测文件使用情况、日志空间及索引碎片化程度。例如,使用`sp_spaceused`检查文件使用量,`sys.dm_db_log_space_usage`监控日志空间,`sys.dm_db_index_physical_stats`识别索引碎片。同时,合理的备份策略和文件组设置也有助于优化空间使用,确保数据库高效运行。
122 2
|
5月前
|
关系型数据库 数据库 数据安全/隐私保护
"告别繁琐!Python大神揭秘:如何一键定制阿里云RDS备份策略,让数据安全与效率并肩飞,轻松玩转云端数据库!"
【8月更文挑战第14天】在云计算时代,数据库安全至关重要。阿里云RDS提供自动备份,但标准策略难以适应所有场景。传统手动备份灵活性差、管理成本高且恢复效率低。本文对比手动备份,介绍使用Python自定义阿里云RDS备份策略的方法,实现动态调整备份频率、集中管理和智能决策,提升备份效率与数据安全性。示例代码演示如何创建自动备份任务。通过自动化与智能化备份管理,支持企业数字化转型。
118 2
|
5月前
|
存储 C# 关系型数据库
“云端融合:WPF应用无缝对接Azure与AWS——从Blob存储到RDS数据库,全面解析跨平台云服务集成的最佳实践”
【8月更文挑战第31天】本文探讨了如何将Windows Presentation Foundation(WPF)应用与Microsoft Azure和Amazon Web Services(AWS)两大主流云平台无缝集成。通过具体示例代码展示了如何利用Azure Blob Storage存储非结构化数据、Azure Cosmos DB进行分布式数据库操作;同时介绍了如何借助Amazon S3实现大规模数据存储及通过Amazon RDS简化数据库管理。这不仅提升了WPF应用的可扩展性和可用性,还降低了基础设施成本。
100 0