influx+grafana自定义python采集数据和一些坑的总结

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 版权声明:本文可能为博主原创文章,若标明出处可随便转载。 https://blog.
版权声明:本文可能为博主原创文章,若标明出处可随便转载。 https://blog.csdn.net/Jailman/article/details/78913824

先上网卡数据采集脚本,这个基本上是最大的坑,因为一些数据的类型不正确会导致no datapoint的错误,真是令人抓狂,注意其中几个key的值必须是int或者float类型,如果你不慎写成了string,那就麻烦了,其他的tag是string类型。

另外数据采集时间间隔一般就是10秒,这是潜规则,大家都懂。

官方参考地址:

官参

有图有真相


#! /usr/bin/env python
#-*- coding:utf-8 -*-

import os
import arrow
import time
from time import sleep
from influxdb import InfluxDBClient

client = InfluxDBClient('localhost', 8086, 'root', '', 'telegraf') 

while True:
    if int(time.time())%10 == 0:
        cmd = 'cat /proc/net/dev|grep "ens4"'
        rawline = os.popen(cmd).read().strip()
        rxbytes = int(rawline.split()[1])
        txbytes = int(rawline.split()[9])
        rxpks = int(rawline.split()[2])
        txpks = int(rawline.split()[10])
        now = str(arrow.now()).split('.')[0] + 'Z'

        print time.time(), rxbytes,txbytes,rxpks,txpks   

        json_body = [
            {
                "measurement": "network",
                "tags": {
                    "host": "gc-u16",
                    "nio": "ens4"
                },
                #"time": now,
                "fields": {
                    "rxbytes": rxbytes,
                    "txbytes": txbytes,
                    "rxpks": rxpks,
                    "txpks": txpks
                }
            }
        ]

        client.write_points(json_body)
    sleep(1)

运行脚本,查看influxdb数据,至于后台+独立线程这些东西就见仁见智了


然后配置图形,这个就简单了,只要你数据没写错,基本上grafana都能采集到,这里忽略配置数据源创建dashboard和表格等乱七八糟的,直接上配置的sql图形,大致就是这样吧








相关实践学习
通过可观测可视化Grafana版进行数据可视化展示与分析
使用可观测可视化Grafana版进行数据可视化展示与分析。
目录
相关文章
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能数据隐私保护
使用Python实现深度学习模型:智能数据隐私保护 【10月更文挑战第3天】
103 0
|
9天前
|
存储 JSON API
如何自定义Python环境变量?
如何自定义Python环境变量?
21 3
|
29天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
14天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
23 1
|
15天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
15天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
1月前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
50 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
1月前
|
计算机视觉 Python
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
这篇文章介绍了如何使用Python的OpenCV库将多张图片合并为一张图片显示,以及如何使用matplotlib库从不同txt文档中读取数据并绘制多条折线图。
42 3
Python实用记录(九):将不同的图绘制在一起、将不同txt文档中的数据绘制多条折线图
|
1月前
|
数据可视化 算法 Python
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
本文介绍了如何利用Python脚本结合动态模态分解(DMD)技术,分析从OpenFOAM模拟中提取的二维切片数据,以深入理解流体动力学现象。通过PyVista库处理VTK格式的模拟数据,进行POD和DMD分析,揭示流场中的主要能量结构及动态特征。此方法为研究复杂流动系统提供了有力工具。
73 2
基于OpenFOAM和Python的流场动态模态分解:从数据提取到POD-DMD分析
|
27天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
54 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
下一篇
无影云桌面