机器学习中的常用操作

简介: 机器学习中的常用操作输入节点到隐藏节点,特征数量n可能会变化,这个取决于我们定义的隐藏层的节点个数,但是样本数量m是不变的,从隐藏层出来还是m在预测的时候,我们需要不断的迭代输入的特征提高精度增加样本数量 -> 解决high variance减少特征 -> 解决high varian...

机器学习中的常用操作

  • 输入节点到隐藏节点,特征数量n可能会变化,这个取决于我们定义的隐藏层的节点个数,但是样本数量m是不变的,从隐藏层出来还是m
  • 在预测的时候,我们需要不断的迭代输入的特征

提高精度

  • 增加样本数量 -> 解决high variance
  • 减少特征 -> 解决high variance
  • 增加特征 -> 解决high bias
    • 根据现有的特征生成多项式(从\(x_1\), \(x_2\)扩展到\(x_1 + x_2 + x_1^{2} + x_2^{2} + x_1{x_2}\))
    • 寻找新的特征
  • 增加正则化参数\(\lambda\) -> 解决high variance
  • 减小正则化参数\(\lambda\) -> 解决high bias

对数据的划分

  • 将原来的训练样本按照6:2:2的比例划分成Train, Cross Validation, Test三个集合
  • 如果不考虑Cross Validation的话, 则将训练样本划分成7:3的比例 -> Train(7), Test(3)
  • 关于Cross Validation
    • 如果我们对同一个机器学习问题, 假设了多个不同的模型(表现形式不同, 如\(kx+b\)\(x^2+b\), 而不是\(k_1x+b_1\)\(kx+b\), 因为k和b是我们的参数, 是我们要求的, 他们不应该考虑进去), 我们需要选择最好的模型(需要引进额外的参数d, 表示那个模型), 这个时候就要通过Cross Validation中的数据计算每一个模型测试的\(J_{cv}(\theta)\)来判断, \(J_{cv}(\theta)\)在后面会提到

误差

  • 一旦对数据集合进行了划分,那么我们的损失值就从原来的\(J(\theta)\)变成了\(J_{train}(\theta)\), \(J_{cv}(\theta)\), \(J_{test}(\theta)\), 其中\(J_{train}(\theta)\)的功能就是在没有进行数据集合划分的\(J(\theta)\)的功能, 而\(J_{test}(\theta)\)是在我们已经拟合了假设函数, 使用Test集合中的数据进行测试所产生的损失, \(J_{cv}(\theta)\)在上面已经提到过了, 其实在CV数据集中的进行的就是对模型的测试而已, 和我们要在Test数据集中是一样的, 只是目的不同, 在CV数据集中, 我们目的是找出最好的模型, 因为这个时候模型太多了, 而在Test数据集中的时候, 在之前我们已经通过交叉验证获取了最好的模型, 现在是来测试一下, 这个模型对Test中的数据拟合的情况
  • \(J_{train}(\theta)\), \(J_{cv}(\theta)\), \(J_{test}(\theta)\)的公式和原始的\(J(\theta)\)一样, 为\(J_{train}(\theta)={{{1}\over{2m}}\sum_{i=1}^{m}(h(x^{(i)})-y^{(i)})^{2}}\), 注意, m表示训练样本的数量, x和y也都是在训练样本中的, 以此类推到\(J_{cv}(\theta)\), \(J_{test}(\theta)\)

高偏差(high bias)和高方差(high variance)

  • 高偏差: 欠拟合
    • 增加样本数量是徒劳
  • 高方差: 过拟合
    • 增加样本数量会提高精度
  • 常见的\(J_{train}\)\(J_{cv}\)关系

    • 随着样本逐渐增加
      • \(J_{train}\uparrow\), 因为在样本很少的时候是很好拟合的, 随着样本的增加想要拟合所有的点就非常的困难
      • \(J_{cv}{\downarrow}\), 但是交叉验证的结果越来越小, 我们主要看的就是这个
    • 随着正则化参数\(\lambda\)逐渐增加
      • \(J_{train}\uparrow\), \(\lambda\)越大, 则表示我们对\(\theta\)的惩罚力度在不断的增大, 模型会朝着过拟合的反方向发展, 我们知道过拟合的\(j_{train}\)很小, 所以现在这个情况下\(J_{train}\)应该增大
      • \(J_{cv}{\downarrow}{\uparrow}\), \(J_{cv}\)先下降后上升, \(\lambda\)太小或者太大都不好
    • 随着阶数逐渐增加
      • \(J_{train}\downarrow\)
      • \(J_{cv}{\downarrow}{\uparrow}\)
    • 从上面我们发现, \(J_{cv}\)要么是下降的, 要么是先下降再上升的
目录
相关文章
|
机器学习/深度学习 存储 异构计算
机器学习中的线性代数:关于常用操作的新手指南
什么是线性代数? 在深度学习中,线性代数是一个非常有用的数学工具,提供同时操作多组数值的方法。它提供多种可以放置数据的结构,如向量(vectors)和矩阵(matrices, 即spreadsheets)两种结构,并定义了一系列的加减乘除规则来操作这些结构。
1853 0
|
12天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
44 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
1月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
59 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
2月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
108 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
22天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
下一篇
无影云桌面