数据降维

简介: 数据降维分类PCA(主成分分析降维)相关系数降维PCA 降维(不常用)实现思路对数据进行标准化计算出数据的相关系数矩阵(是方阵, 维度是nxn, n是特征的数量)计算出相关系数矩阵的特征值和特征向量(虽然这里说的是向量, 但是是矩阵, 这个矩阵的每一列都是特征值或者特征向量,...

数据降维

分类

  • PCA(主成分分析降维)
  • 相关系数降维

PCA 降维(不常用)

实现思路

  • 对数据进行标准化
  • 计算出数据的相关系数矩阵(是方阵, 维度是nxn, n是特征的数量)
  • 计算出相关系数矩阵的特征值和特征向量(虽然这里说的是向量, 但是是矩阵, 这个矩阵的每一列都是特征值或者特征向量, 是nxn), 特征值是每一个特征的特征值的集合, 但是在特征向量是每一个特征的特征向量的集合, 前者我们提到的特征值和特征向量是集合
  • 多特征值进行降序排序
  • 根据已经得到的特征值计算出贡献率和累计贡献率(主要看累计贡献率, 单单一个贡献率指的是一个主成分保存的原始特征的信息, 累计贡献率是总共保存的原始特征信息)
  • 设置信息阈值T, 一般设置为0.9, 如果大于T, 则记录下来当前的位置k(k也就是我们选择的主成分的个数, 主成分就是特征, 也就是一列)
  • 根据k选择主成分对应的特征向量
  • 将标准化之后的数据(矩阵)右乘在上一步中选择出来的特征向量(在这一步得到的矩阵就是m x new_n维度的了), 得到的就是主成分的分数, 也就是降维之后的数据集合

伪代码

X = load('data.xlsx', 'B1:I11');
m = size(X, 1); % m 表示样本的数量
n = size(X, 2); % n 表示特征的数量
% 数据标准化
for i = 1:m
    SX(:, i) = (X(:, i) - mean(X(:, i))) / std(X(:, i));
end

% 计算相关系数
CM = corrcoef(SX);
% V 是特征向量, D 是特征值
[V D] = eig(CM);

% 对D特征值进行降序排序, 将结果保存到DS的第一列
for i = 1:n
    DS(:, 1) = D(n + 1 - i, n + 1 - i);
end

% 计算贡献率和累计贡献率
for i = 1:n
    % 第二列为当前单个, 每一个, 主成分的贡献率
    DS(:, 2) = D(i, 1) / sum(D(:, 1));
    % 第三列为到当前主成分的累计贡献率
    DS(:, 3) = sum(D(1:i, 1)) / sum(D(:, 1));
end

% 选择主成分
T = 0.9;
for i = 1:n
    if DS(:, i) > T
        k = i;
        break;
    end
end

% 获取主成分对应的特征向量
for i = 1:n
    PV(:, i) = DS(:, n + 1 - i);
end

% 获取新的特征样本
X_new = SX * PV;

相关系数降维

  • 公式: \[r=\sum_{j=1}^{m}{{(x_{j}-\overline{x_{j}})({y_{j}-\overline{y_{j}}})}\over{std(x_{j})std(y_{j})}}\]
  • 如果|r|在[0.7, 1]时表示强线性关系, 说明x和y有很紧密的线性关系
  • 如果|r|在[0.5, 0.7]时表示中线性关系
  • 如果|r|在[0.2, 0.5]时表示低线性关系
  • 如果|r|在[0, 0.2]时表示没有关系
  • r > 0表示正相关, r < 0表示负关系
目录
相关文章
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像处理领域的应用与前景展望
【10月更文挑战第18天】深度学习在图像处理领域的应用与前景展望
545 0
C#获取应用程序所在路径的父级目录
C#获取应用程序所在路径的父级目录
|
Java
Java有没有goto?
goto是java中的保留字,但是没有在java中使用。
1310 0
|
10天前
|
人工智能 自然语言处理 Shell
🦞 如何在 OpenClaw (Clawdbot/Moltbot) 配置阿里云百炼 API
本教程指导用户在开源AI助手Clawdbot中集成阿里云百炼API,涵盖安装Clawdbot、获取百炼API Key、配置环境变量与模型参数、验证调用等完整流程,支持Qwen3-max thinking (Qwen3-Max-2026-01-23)/Qwen - Plus等主流模型,助力本地化智能自动化。
🦞 如何在 OpenClaw (Clawdbot/Moltbot) 配置阿里云百炼 API
|
6天前
|
人工智能 机器人 Linux
保姆级 OpenClaw (原 Clawdbot)飞书对接教程 手把手教你搭建 AI 助手
OpenClaw(原Clawdbot)是一款开源本地AI智能体,支持飞书等多平台对接。本教程手把手教你Linux下部署,实现数据私有、系统控制、网页浏览与代码编写,全程保姆级操作,240字内搞定专属AI助手搭建!
4384 13
保姆级 OpenClaw (原 Clawdbot)飞书对接教程 手把手教你搭建 AI 助手
|
5天前
|
人工智能 安全 机器人
OpenClaw(原 Clawdbot)钉钉对接保姆级教程 手把手教你打造自己的 AI 助手
OpenClaw(原Clawdbot)是一款开源本地AI助手,支持钉钉、飞书等多平台接入。本教程手把手指导Linux下部署与钉钉机器人对接,涵盖环境配置、模型选择(如Qwen)、权限设置及调试,助你快速打造私有、安全、高权限的专属AI助理。(239字)
3668 9
OpenClaw(原 Clawdbot)钉钉对接保姆级教程 手把手教你打造自己的 AI 助手
|
8天前
|
人工智能 JavaScript 应用服务中间件
零门槛部署本地AI助手:Windows系统Moltbot(Clawdbot)保姆级教程
Moltbot(原Clawdbot)是一款功能全面的智能体AI助手,不仅能通过聊天互动响应需求,还具备“动手”和“跑腿”能力——“手”可读写本地文件、执行代码、操控命令行,“脚”能联网搜索、访问网页并分析内容,“大脑”则可接入Qwen、OpenAI等云端API,或利用本地GPU运行模型。本教程专为Windows系统用户打造,从环境搭建到问题排查,详细拆解全流程,即使无技术基础也能顺利部署本地AI助理。
6971 15
|
6天前
|
存储 人工智能 机器人
OpenClaw是什么?阿里云OpenClaw(原Clawdbot/Moltbot)一键部署官方教程参考
OpenClaw是什么?OpenClaw(原Clawdbot/Moltbot)是一款实用的个人AI助理,能够24小时响应指令并执行任务,如处理文件、查询信息、自动化协同等。阿里云推出的OpenClaw一键部署方案,简化了复杂配置流程,用户无需专业技术储备,即可快速在轻量应用服务器上启用该服务,打造专属AI助理。本文将详细拆解部署全流程、进阶功能配置及常见问题解决方案,确保不改变原意且无营销表述。
4538 4
|
4天前
|
人工智能 机器人 Linux
OpenClaw(Clawdbot、Moltbot)汉化版部署教程指南(零门槛)
OpenClaw作为2026年GitHub上增长最快的开源项目之一,一周内Stars从7800飙升至12万+,其核心优势在于打破传统聊天机器人的局限,能真正执行读写文件、运行脚本、浏览器自动化等实操任务。但原版全英文界面对中文用户存在上手门槛,汉化版通过覆盖命令行(CLI)与网页控制台(Dashboard)核心模块,解决了语言障碍,同时保持与官方版本的实时同步,确保新功能最快1小时内可用。本文将详细拆解汉化版OpenClaw的搭建流程,涵盖本地安装、Docker部署、服务器远程访问等场景,同时提供环境适配、问题排查与国内应用集成方案,助力中文用户高效搭建专属AI助手。
2439 5