PCA-小麦分类预处理之降维

简介: PCA-小麦分类预处理之降维

用PCA将小麦的数据降维到二维

from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
import numpy 
import pandas as pd
fp=open('seeds_dataset.txt','r')
ls=[]
for line in fp:
    line=line.strip('\n')   #将\n去掉
    ls.append(line.split('\t'))   #将空格作为分隔符将一个字符切割成一个字符数组
fp.close()
ls=numpy.array(ls,dtype=float)   #将其转换成numpy的数组,并定义数据类型为float
print(ls)
# 将文件转为DataFrame表格
ls_pd = pd.DataFrame(ls)
ls_pd.loc[:,1:6]
y = ls_pd.loc[:,7]
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
data_std = sc.fit_transform(ls_pd.loc[:,1:6])
pca = PCA(n_components = 2) #加载PCA算法,设置降维后主成分数目为2
reduced_x = pca.fit_transform(data_std) #对样本进行降维
reduced_x
red_x,red_y=[],[]
blue_x,blue_y=[],[]
green_x,green_y=[],[]
for i in range(len(reduced_x)):
    if y[i] == 1:
        red_x.append(reduced_x[i][0])
        red_y.append(reduced_x[i][1])
    elif y[i] == 2:
        blue_x.append(reduced_x[i][0])
        blue_y.append(reduced_x[i][1])
    else:
        green_x.append(reduced_x[i][0])
        green_y.append(reduced_x[i][1])
#可视化
plt.scatter(red_x,red_y,c='r',marker='x')
plt.scatter(blue_x,blue_y,c='b',marker='D')
plt.scatter(green_x,green_y,c='g',marker='.')
plt.show()

结果如下:

相关文章
|
存储 算法 关系型数据库
深入理解InnoDB索引数据结构和算法
1. **索引定义**:索引是提升查询速度的有序数据结构,帮助数据库系统快速找到数据。 2. **索引类型**:包括普通索引、唯一索引、主键索引、空间索引和全文索引,每种有特定应用场景。 3. **数据结构**:InnoDB使用B+树作为索引结构,确保所有节点按顺序排列,降低查询时的磁盘I/O。 4. **B+树特性**:所有数据都在叶子节点,非叶子节点仅存储索引,提供高效范围查询。 5. **索引优势**:通过减少查找数据所需的磁盘I/O次数,显著提高查询性能。 **总结:**InnoDB索引通过B+树结构,优化了数据访问,使得查询速度快,尤其适合大数据量的场景。
815 0
深入理解InnoDB索引数据结构和算法
|
分布式数据库 Hbase 存储
带你读《HBase原理与实践》之一:HBase概述
Apache HBase是基于Apache Hadoop构建的一个高可用、高性能、多版本的分布式NoSQL数据库,是Google BigTable的开源实现,通过在廉价服务器上搭建大规模结构化存储集群,提供海量数据高性能的随机读写能力。
|
存储 人工智能 前端开发
AI 网关零代码解决 AI 幻觉问题
本文主要介绍了 AI Agent 的背景,概念,探讨了 AI Agent 网关插件的使用方法,效果以及实现原理。
19090 137
|
10月前
|
数据采集 监控 数据挖掘
常用电商商品数据API接口(item get)概述,数据分析以及上货
电商商品数据API接口(item get)是电商平台上用于提供商品详细信息的接口。这些接口允许开发者或系统以编程方式获取商品的详细信息,包括但不限于商品的标题、价格、库存、图片、销量、规格参数、用户评价等。这些信息对于电商业务来说至关重要,是商品数据分析、价格监控、上货策略制定等工作的基础。
|
前端开发 Java
Java HotSpot(TM) 64-Bit Server VM warning
Java HotSpot(TM) 64-Bit Server VM warning
4596 1
|
测试技术 数据库 数据库管理
SqlLite数据库连接池
这篇文章介绍了如何使用HikariCP作为SQLite数据库的连接池,包括配置依赖、创建连接池、获取连接、关闭连接以及进行数据库操作的示例代码和性能测试对比。
Vue3.0+ts填坑 warning Unexpected any报类型警告
Vue3.0+ts填坑 warning Unexpected any报类型警告
316 0
|
机器学习/深度学习 人工智能 安全
AI时代:程序员如何重塑核心竞争力
【8月更文第5天】近年来,人工智能(AI)和生成式预训练模型(AIGC)的飞速发展对软件开发行业产生了深远的影响。ChatGPT、Midjourney、Claude 等大语言模型的出现,不仅极大地提高了编程效率,还改变了程序员的工作方式。随着AI辅助编程工具的日益普及,程序员们面临着前所未有的机遇与挑战。本文旨在探讨在AI时代,程序员应如何调整自己的职业路径和发展策略,以保持和提升自身的竞争力。
1113 0
|
存储 安全 数据库
对称加密的日常实践应用:以AES为例的加密解密指南
**摘要:** 本文介绍了对称加密算法AES在数据安全中的应用,强调了其在文件、通信和数据库加密中的重要性。通过Python示例展示了如何使用`cryptography`库实现AES-256的加密和解密,涉及密钥生成、CBC模式及PKCS7填充。同时,提醒注意密钥管理、模式选择和填充方式的选择对加密安全性的影响。
1447 1