R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化

简介: R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化

在讨论分类时,我们经常分析二维数据(一个自变量,一个因变量)。但在实际生活中,有更多的观察值,更多的解释变量。随着两个以上的解释变量,它开始变得更加复杂的可视化。

数据

我们使用心脏病数据,预测急诊病人的心肌梗死,包含变量:

  1. 心脏指数
  2. 心搏量指数
  3. 舒张压
  4. 肺动脉压
  5. 心室压力
  6. 肺阻力
  7. 是否存活

其中我们有急诊室的观察结果,对于心肌梗塞,我们想了解谁存活下来了,以得到一个预测模型。但是在运行一些分类器之前,我们先把我们的数据可视化。

主成分PCA

由于我们有7个解释变量和我们的因变量(生存或死亡),我们可以去做一个PCA。

acp=PCA(X)

添加死亡生存变量,就把它当作数字0,1变量。

是否存活= 是否存活=="存活")*1

结果不错,我们看到因变量与部分自变量是同向的。也可以可视化样本和类别

plot(cp  )

我们可以在这里推导出一个不错的分类器。至少,在前两个成分上投影时,我们可以看到我们的类别。

现在,我们不能在前两个主成分上得到一个分类器并将其可视化吗?   因为PCA是简单的基于正交投影的,所以我们可以(这里的数据是标准化的)。给定前两个分量平面上的两个坐标,给定我们的变换矩阵、归一化分量和一个分类器(这里是基于逻辑回归),我们可以回到原始空间,并对新数据进行分类。

PCA(X,ncp=ncol(X))
function(d1,d2,Mat,reg){
  z=Mat %*% c(d1,d2,rep(0,ncol(X)-2))
  newd=data.frame(t(z*s+m))
pred(reg, newd  }

逻辑回归

现在考虑一个逻辑回归。只是为了简化(去掉非显著变量),我们使用一个逐步回归的程序来简化模型。


reg_tot=step(glm(是否存活~. ,
family=binomial))

可视化等概率线(如个人有50%的生存机会)使用以下

xgrid=seq(-5,5,length=25 )
ygrid=seq(-5,5,length=25 )
zgrid=ter(xgrid,ygrid,p)

然后,我们在之前的图形上添加一条等高线

PCA(data,quali.sup=8 )
contour( zgrid )

结果不差,但我们应该可以做得更好。如果我们把所有的变量都保留在这里(即使它们不重要),会怎么样呢?

glm(是否存活~., 
            family=binomial)
 
contour(xgrid,ygrid,zgrid )

在现实生活中,要想真正说出我们的分类器的一些相关信息,我们应该在观测值的一个子集上拟合我们的模型,然后在另一个子集上测试它。在这里,我们的目标更多的是在某个投影空间上得到一个函数来可视化我们的分类。

决策树

默认分类树

> plot( re,type=4,extra=6)

我们可以在此更改选项,例如每个节点的最小观察数

rpart(factor(是否存活)~ ,
+       control=rpart.control(minsplit=10))

或者

rpart( 
+        control=rpart.control(minsplit=5))

要将该分类可视化,获得前两个成分的投影

> p=function(d1,d2) pred2(d1,d2 )
> zgrid=Outer(xgrid,ygrid,p)
 PCA(  quali.sup=8,graph=TRUE)
> image(xgrid,ygrid,zgrid )
> contour(xgrid,ygrid,zgrid,add=TRUE,levels=.5)

也可以考虑这种情况

rpart( control=rpart.control(minsplit=5))

最后,我们还可以生成更多的树,通过采样获得。这就是bagging的概念:我们boostrap 观测值,生长一些树,然后,我们将预测值进行汇总。在网格上

> for(i in 1:1200){
+ indice = sample(1:nrow(MYOCARDE),
 + arbre_b = rpart(factor(是否存活)~.,
+}
>Zgrid = Z/1200

可视化

最后,可以使用随机森林算法。

> fore= randomForest(factor(是否存活)~.,
> pF=function(d1,d2) pred2(d1,d2,Minv,fore)
> zgridF=Outer(xgrid,ygrid,pF)
PCA(data,.sup=8,graph=TRUE)
> image(xgrid,ygrid,Zgrid,add=TRUE,
> contour(xgrid,ygrid,zgridF,



相关文章
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
机器学习/深度学习 资源调度 算法
R语言逻辑回归与分类模型的深度探索与应用
【8月更文挑战第31天】逻辑回归作为一种经典的分类算法,在R语言中通过`glm()`函数可以轻松实现。其简单、高效且易于解释的特点,使得它在处理二分类问题时具有广泛的应用价值。然而,值得注意的是,逻辑回归在处理非线性关系或复杂交互作用时可能表现不佳,此时可能需要考虑其他更复杂的分类模型。
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
349 3
|
机器学习/深度学习 算法 数据库
数据分享|R语言用核Fisher判别方法、支持向量机、决策树与随机森林研究客户流失情况
数据分享|R语言用核Fisher判别方法、支持向量机、决策树与随机森林研究客户流失情况
|
机器学习/深度学习 数据可视化 算法
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为1
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
机器学习/深度学习 数据可视化 算法
R语言聚类分析、因子分析、主成分分析PCA农村农业相关经济指标数据可视化|数据分享
R语言聚类分析、因子分析、主成分分析PCA农村农业相关经济指标数据可视化|数据分享
|
机器学习/深度学习 监控 数据可视化
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例2
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
9月前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
344 9
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化