聊聊并发(四)深入分析ConcurrentHashMap

简介: 原创文章,转载请注明: 转载自并发编程网 – ifeve.com本文链接地址: 聊聊并发(四)深入分析ConcurrentHashMap 术语定义 术 语 英文  解释 哈希算法 hash algorithm 是一种将任意内容的输入转换成相同长度输出的加密方式,其输出被称为哈希值 哈希表 hash table 根据设定的哈希函数H(key)

原创文章,转载请注明: 转载自并发编程网 – ifeve.com本文链接地址: 聊聊并发(四)深入分析ConcurrentHashMap

术语定义

术 语 英文  解释
哈希算法 hash algorithm 是一种将任意内容的输入转换成相同长度输出的加密方式,其输出被称为哈希值
哈希表 hash table

根据设定的哈希函数H(key)和处理冲突方法将一组关键字映象到一个有限的地址区间上并以关键字在地址区间中的象作为记录在表中的存储位置,这种表称为哈希表或散列,所得存储位置称为哈希地址或散列地址。



线程不安全的HashMap

因为多线程环境下,使用Hashmap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap。

如以下代码:

01 final HashMap<String, String> map = new HashMap<String, String>(2);
02  
03         Thread t = new Thread(new Runnable() {
04  
05             @Override
06  
07             public void run() {
08  
09                 for (int i = 0; i < 10000; i++) {
10  
11                     new Thread(new Runnable() {
12  
13                         @Override
14  
15                         public void run() {
16  
17                             map.put(UUID.randomUUID().toString(), "");
18  
19                         }
20  
21                     }, "ftf" + i).start();
22  
23                 }
24  
25             }
26  
27         }, "ftf");
28  
29         t.start();
30  
31         t.join();

效率低下的HashTable容器

     HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问HashTable的同步方法时,其他线程访问HashTable的同步方法时,可能会进入阻塞或轮询状态。如线程1使用put进行添加元素,线程2不但不能使用put方法添加元素,并且也不能使用get方法来获取元素,所以竞争越激烈效率越低。

ConcurrentHashMap的锁分段技术

     HashTable容器在竞争激烈的并发环境下表现出效率低下的原因,是因为所有访问HashTable的线程都必须竞争同一把锁,那假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效的提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术,首先将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。

ConcurrentHashMap的结构

我们通过ConcurrentHashMap的类图来分析ConcurrentHashMap的结构。
ConcurrentHashMap类图
ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment是一种可重入锁ReentrantLock,在ConcurrentHashMap里扮演锁的角色,HashEntry则用于存储键值对数据。一个ConcurrentHashMap里包含一个Segment数组,Segment的结构和HashMap类似,是一种数组和链表结构, 一个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元素, 每个Segment守护者一个HashEntry数组里的元素,当对HashEntry数组的数据进行修改时,必须首先获得它对应的Segment锁。
ConcurrentHashMap结构图
 

ConcurrentHashMap的初始化

ConcurrentHashMap初始化方法是通过initialCapacity,loadFactor, concurrencyLevel几个参数来初始化segments数组,段偏移量segmentShift,段掩码segmentMask和每个segment里的HashEntry数组。

初始化segments数组。让我们来看一下初始化segmentShift,segmentMask和segments数组的源代码。

01 if (concurrencyLevel > MAX_SEGMENTS)
02  
03 concurrencyLevel = MAX_SEGMENTS;
04  
05 // Find power-of-two sizes best matching arguments
06  
07 int sshift = 0;
08  
09 int ssize = 1;
10  
11 while (ssize < concurrencyLevel) {
12  
13 ++sshift;
14  
15 ssize <<= 1;
16  
17 }
18  
19 segmentShift = 32 - sshift;
20  
21 segmentMask = ssize - 1;
22  
23 this.segments = Segment.newArray(ssize);

由上面的代码可知segments数组的长度ssize通过concurrencyLevel计算得出。为了能通过按位与的哈希算法来定位segments数组的索引,必须保证segments数组的长度是2的N次方(power-of-two size),所以必须计算出一个是大于或等于concurrencyLevel的最小的2的N次方值来作为segments数组的长度。假如concurrencyLevel等于14,15或16,ssize都会等于16,即容器里锁的个数也是16。注意concurrencyLevel的最大大小是65535,意味着segments数组的长度最大为65536,对应的二进制是16位。

初始化segmentShift和segmentMask。这两个全局变量在定位segment时的哈希算法里需要使用,sshift等于ssize从1向左移位的次数,在默认情况下concurrencyLevel等于16,1需要向左移位移动4次,所以sshift等于4。segmentShift用于定位参与hash运算的位数,segmentShift等于32减sshift,所以等于28,这里之所以用32是因为ConcurrentHashMap里的hash()方法输出的最大数是32位的,后面的测试中我们可以看到这点。segmentMask是哈希运算的掩码,等于ssize减1,即15,掩码的二进制各个位的值都是1。因为ssize的最大长度是65536,所以segmentShift最大值是16,segmentMask最大值是65535,对应的二进制是16位,每个位都是1。

初始化每个Segment。输入参数initialCapacity是ConcurrentHashMap的初始化容量,loadfactor是每个segment的负载因子,在构造方法里需要通过这两个参数来初始化数组中的每个segment。

01 if (initialCapacity > MAXIMUM_CAPACITY)
02  
03           initialCapacity = MAXIMUM_CAPACITY;
04  
05       int c = initialCapacity / ssize;
06  
07       if (c * ssize < initialCapacity)
08  
09           ++c;
10  
11       int cap = 1;
12  
13       while (cap < c)
14  
15           cap <<= 1;
16  
17       for (int i = 0; i < this.segments.length; ++i)
18  
19           this.segments[i] = new Segment<K,V>(cap, loadFactor);

上面代码中的变量cap就是segment里HashEntry数组的长度,它等于initialCapacity除以ssize的倍数c,如果c大于1,就会取大于等于c的2的N次方值,所以cap不是1,就是2的N次方。segment的容量threshold=(int)cap*loadFactor,默认情况下initialCapacity等于16,loadfactor等于0.75,通过运算cap等于1,threshold等于零。

定位Segment

既然ConcurrentHashMap使用分段锁Segment来保护不同段的数据,那么在插入和获取元素的时候,必须先通过哈希算法定位到Segment。可以看到ConcurrentHashMap会首先使用Wang/Jenkins hash的变种算法对元素的hashCode进行一次再哈希。

1 private static int hash(int h) {
2  
3 h += (h << 15) ^ 0xffffcd7d; h ^= (h >>> 10);
4  
5 h += (h << 3); h ^= (h >>> 6);
6  
7 h += (h << 2) + (h << 14); return h ^ (h >>> 16);
8  
9 }

再哈希,其目的是为了减少哈希冲突,使元素能够均匀的分布在不同的Segment上,从而提高容器的存取效率。假如哈希的质量差到极点,那么所有的元素都在一个Segment中,不仅存取元素缓慢,分段锁也会失去意义。我做了一个测试,不通过再哈希而直接执行哈希计算。

1 System.out.println(Integer.parseInt("0001111"2) & 15);
2  
3 System.out.println(Integer.parseInt("0011111"2) & 15);
4  
5 System.out.println(Integer.parseInt("0111111"2) & 15);
6  
7 System.out.println(Integer.parseInt("1111111"2) & 15);

计算后输出的哈希值全是15,通过这个例子可以发现如果不进行再哈希,哈希冲突会非常严重,因为只要低位一样,无论高位是什么数,其哈希值总是一样。我们再把上面的二进制数据进行再哈希后结果如下,为了方便阅读,不足32位的高位补了0,每隔四位用竖线分割下。

1 01000111011001111101101001001110
2  
3 11110111010000110000000110111000
4  
5 01110111011010010100011000111110
6  
7 10000011000000001100100000011010

可以发现每一位的数据都散列开了,通过这种再哈希能让数字的每一位都能参加到哈希运算当中,从而减少哈希冲突。ConcurrentHashMap通过以下哈希算法定位segment。

默认情况下segmentShift为28,segmentMask为15,再哈希后的数最大是32位二进制数据,向右无符号移动28位,意思是让高4位参与到hash运算中, (hash >>> segmentShift) & segmentMask的运算结果分别是4,15,7和8,可以看到hash值没有发生冲突。

1 final Segment<K,V> segmentFor(int hash) {
2  
3         return segments[(hash >>> segmentShift) & segmentMask];
4  
5     }

ConcurrentHashMap的get操作

Segment的get操作实现非常简单和高效。先经过一次再哈希,然后使用这个哈希值通过哈希运算定位到segment,再通过哈希算法定位到元素,代码如下:

1 public V get(Object key) {
2  
3        int hash = hash(key.hashCode());
4  
5        return segmentFor(hash).get(key, hash);
6  
7    }

get操作的高效之处在于整个get过程不需要加锁,除非读到的值是空的才会加锁重读,我们知道HashTable容器的get方法是需要加锁的,那么ConcurrentHashMap的get操作是如何做到不加锁的呢?原因是它的get方法里将要使用的共享变量都定义成volatile,如用于统计当前Segement大小的count字段和用于存储值的HashEntry的value。定义成volatile的变量,能够在线程之间保持可见性,能够被多线程同时读,并且保证不会读到过期的值,但是只能被单线程写(有一种情况可以被多线程写,就是写入的值不依赖于原值),在get操作里只需要读不需要写共享变量count和value,所以可以不用加锁。之所以不会读到过期的值,是根据java内存模型的happen before原则,对volatile字段的写入操作先于读操作,即使两个线程同时修改和获取volatile变量,get操作也能拿到最新的值,这是用volatile替换锁的经典应用场景。

1 transient volatile int count;
2  
3 volatile V value;

在定位元素的代码里我们可以发现定位HashEntry和定位Segment的哈希算法虽然一样,都与数组的长度减去一相与,但是相与的值不一样,定位Segment使用的是元素的hashcode通过再哈希后得到的值的高位,而定位HashEntry直接使用的是再哈希后的值。其目的是避免两次哈希后的值一样,导致元素虽然在Segment里散列开了,但是却没有在HashEntry里散列开。

1 hash >>> segmentShift) & segmentMask//定位Segment所使用的hash算法
2  
3 int index = hash & (tab.length - 1);// 定位HashEntry所使用的hash算法

ConcurrentHashMap的Put操作

由于put方法里需要对共享变量进行写入操作,所以为了线程安全,在操作共享变量时必须得加锁。Put方法首先定位到Segment,然后在Segment里进行插入操作。插入操作需要经历两个步骤,第一步判断是否需要对Segment里的HashEntry数组进行扩容,第二步定位添加元素的位置然后放在HashEntry数组里。

是否需要扩容。在插入元素前会先判断Segment里的HashEntry数组是否超过容量(threshold),如果超过阀值,数组进行扩容。值得一提的是,Segment的扩容判断比HashMap更恰当,因为HashMap是在插入元素后判断元素是否已经到达容量的,如果到达了就进行扩容,但是很有可能扩容之后没有新元素插入,这时HashMap就进行了一次无效的扩容。

如何扩容。扩容的时候首先会创建一个两倍于原容量的数组,然后将原数组里的元素进行再hash后插入到新的数组里。为了高效ConcurrentHashMap不会对整个容器进行扩容,而只对某个segment进行扩容。

ConcurrentHashMap的size操作

如果我们要统计整个ConcurrentHashMap里元素的大小,就必须统计所有Segment里元素的大小后求和。Segment里的全局变量count是一个volatile变量,那么在多线程场景下,我们是不是直接把所有Segment的count相加就可以得到整个ConcurrentHashMap大小了呢?不是的,虽然相加时可以获取每个Segment的count的最新值,但是拿到之后可能累加前使用的count发生了变化,那么统计结果就不准了。所以最安全的做法,是在统计size的时候把所有Segment的put,remove和clean方法全部锁住,但是这种做法显然非常低效。

因为在累加count操作过程中,之前累加过的count发生变化的几率非常小,所以ConcurrentHashMap的做法是先尝试2次通过不锁住Segment的方式来统计各个Segment大小,如果统计的过程中,容器的count发生了变化,则再采用加锁的方式来统计所有Segment的大小。

那么ConcurrentHashMap是如何判断在统计的时候容器是否发生了变化呢?使用modCount变量,在put , remove和clean方法里操作元素前都会将变量modCount进行加1,那么在统计size前后比较modCount是否发生变化,从而得知容器的大小是否发生变化。

参考资料

  1. JDK1.6源代码。
  2. 《Java并发编程实践》
  3. Java并发编程之ConcurrentHashMap
目录
相关文章
|
6月前
|
算法 安全 Java
Java性能优化(四)-多线程调优-Synchronized优化
JVM在JDK1.6中引入了分级锁机制来优化Synchronized,当一个线程获取锁时,首先对象锁将成为一个偏向锁,这样做是为了优化同一线程重复获取导致的用户态与内核态的切换问题;其次如果有多个线程竞争锁资源,锁将会升级为轻量级锁,它适用于在短时间内持有锁,且分锁有交替切换的场景;轻量级锁还使用了自旋锁来避免线程用户态与内核态的频繁切换,大大地提高了系统性能;但如果锁竞争太激烈了,那么同步锁将会升级为重量级锁。减少锁竞争,是优化Synchronized同步锁的关键。
106 2
|
3月前
|
安全 Java API
Java线程池原理与锁机制分析
综上所述,Java线程池和锁机制是并发编程中极其重要的两个部分。线程池主要用于管理线程的生命周期和执行并发任务,而锁机制则用于保障线程安全和防止数据的并发错误。它们深入地结合在一起,成为Java高效并发编程实践中的关键要素。
34 0
|
4月前
|
存储 缓存 安全
聊一聊高效并发之线程安全
该文章主要探讨了高效并发中的线程安全问题,包括线程安全的定义、线程安全的类别划分以及实现线程安全的一些方法。
|
存储 缓存 算法
Java多线程与并发-原理
Java多线程与并发-原理
63 0
|
存储 缓存 Java
多线程与高并发学习:ThreadLocal源码详解
多线程与高并发学习:ThreadLocal源码详解
83 0
|
存储 安全 Java
【JUC基础】11. 并发下的集合类
我们直到ArrayList,HashMap等是线程不安全的容器。但是我们通常会频繁的在JUC中使用集合类,那么应该如何确保线程安全?
112 0
JUC学习(六):HashMap和HashSet的线程不安全问题分析和解决方案(写时复制技术、ConcurrentHashMap)
JUC学习(六):HashMap和HashSet的线程不安全问题分析和解决方案(写时复制技术、ConcurrentHashMap)
111 0
JUC学习(六):HashMap和HashSet的线程不安全问题分析和解决方案(写时复制技术、ConcurrentHashMap)
|
缓存 安全 Java
67. 谈谈ConcurrentHashMap是如何保证线程安全的?
67. 谈谈ConcurrentHashMap是如何保证线程安全的?
166 0
67. 谈谈ConcurrentHashMap是如何保证线程安全的?
|
存储 算法 安全
线程安全原理简析及HashMap多线程并发5种场景异常分析(3)
线程安全原理简析及HashMap多线程并发5种场景异常分析(3)
311 0
线程安全原理简析及HashMap多线程并发5种场景异常分析(3)
|
安全 调度
线程安全原理简析及HashMap多线程并发5种场景异常分析(1)
线程安全原理简析及HashMap多线程并发5种场景异常分析(1)
258 0
线程安全原理简析及HashMap多线程并发5种场景异常分析(1)

热门文章

最新文章

相关实验场景

更多