Python数据分析之dataframe的groupby

简介: 大家都知道数据库有groupby函数,今天给大家讲讲dataframe的groupby函数。groupby函数还是以上文的数据为例子,进行讲解,首先读入数据,通过groupby聚合数据。

大家都知道数据库有groupby函数,今天给大家讲讲dataframe的groupby函数。

groupby函数

还是以上文的数据为例子,进行讲解,首先读入数据,通过groupby聚合数据。(该数据为简书it互联网一段时间的文章收录信息)

import pandas as pd
import pymysql
conn = pymysql.connect(host='localhost', user='root', passwd='123456', db='test', port=3306, charset='utf8')
jianshu = pd.read_sql('select * from jianshu1',conn)
group_user = jianshu.groupby('user')
group_user.groups

可以看出返回的有用户id和所在的索引位置以及数据类型。通过下面代码计算有多少用户。

len(group_user.groups)
#result 543

通过size方法进行统计显示:

size_user = group_user.size()
size_user

进行排序,取前十的用户。

sort_user = size_user.sort_values(ascending=False)
sort_user[0:10]

highcharts绘图

import charts
series = [{'name': 'Apple','data': [10],'type': 'column'},{'name': 'Android','data': [5],'type': 'column'},{'name': 'Other','data': [5],'type': 'column'}]
charts.plot(series,show='inline')

我们需要把数据整合为highcharts能识别的数据结构,然后进行绘制。

series1 = []
for i in a.index:
    data = {
        'name':i,
        'data':[a[i]],
        'type':'column'
    }
    series1.append(data)
charts.plot(series1,options=dict(title=dict(text='投稿前十用户')))

这里的a是前十的用户数据,也就是sort_user[0:10]。
最后祝愿全天下母亲节日快乐

相关文章
|
3月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
377 0
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
191 2
|
10月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
6月前
|
Python
解决Python报错:DataFrame对象没有concat属性的多种方法(解决方案汇总)
总的来说,解决“DataFrame对象没有concat属性”的错误的关键是理解concat函数应该如何正确使用,以及Pandas库提供了哪些其他的数据连接方法。希望这些方法能帮助你解决问题。记住,编程就像是解谜游戏,每一个错误都是一个谜题,解决它们需要耐心和细心。
279 15
|
8月前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。
|
11月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
|
11月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
323 5
|
11月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
11月前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
11月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。

热门文章

最新文章

推荐镜像

更多