Python 正则表达式(regex)

简介: Python 正则表达式(regex)正则表达式正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑正则表达式非Python独...

Python 正则表达式(regex)

正则表达式

正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符串”用来表达对字符串的一种过滤逻辑

正则表达式非Python独有,在Python中使用re模块实现

常见匹配模式
模式          描述
\w            匹配数字、字母、下划线
\W            匹配非数字、字母、下划线
\s            匹配任意空白字符,等价于[\t\n\r\f]
\S            匹配任意非空字符
\d            匹配任意数字,等价于[0-9]
\D            匹配任意非数字
\A            匹配字符串开始
\Z            匹配字符串结束,如果是存在换行,只匹配到换行前的结束字符串
\z            匹配字符串结束
\G            匹配最后匹配完成的位置
\n            匹配一个换行符
\t            匹配一个制表符
^             匹配字符串的开头
$             匹配字符串的末尾
.             匹配任意字符,除了换行符,当re.DOTALL标记被指定时,则可以匹配包括换行符的任意字符。
[...]         用来表示一组字符,单独列出:[abc]匹配"a","b"或"c"
[^...]        不再[]中的字符:[^abc]匹配除了a,b,c之外的字符
*             匹配0个或多个的表达式
+             匹配1个或多个的表达式
?            匹配0个或1个由前面的正则表达式定义的片段,非贪婪模式
{n}           精确匹配n个前面表达式
{n,m}         匹配n到m次由前面的正则表达式定义的片段,贪婪模式
a|b           匹配a或b
()          匹配括号内的表达式,也表示一个组
re.match

re.match 尝试从字符串的起始位置匹配一个模式,如果不是起始位置匹配成功的话, match()就返回none

re.match(pattern,string,flags=0)
常规匹配
import re


content = 'Hello 111 2222 World hello python'
print(len(content))
res = re.match('^Hello\s\d\d\d\s\d{4}\s\w{5}\s.*python$', content)
print(res)
print(res.group())
print(res.span())
运行结果:
33
<_sre.SRE_Match object; span=(0, 21), match='Hello 111 2222 World '>
Hello 111 2222 World 
(0, 21)
泛匹配
import re


content = 'Hello 111 2222 World hello python'
res = re.match('^Hello.*python$', content)
print(res)
print(res.group())
print(res.span())
运行结果:
<_sre.SRE_Match object; span=(0, 33), match='Hello 111 2222 World hello python'>
Hello 111 2222 World hello python
(0, 33)
匹配目标
import re


content = 'Hello 111 2222 World hello python'
res = re.match('^Hello\s(\d+)\s(\d+)\s.*python$', content)
print(res)
print(res.group(1), res.group(2)) 
运行结果:
<_sre.SRE_Match object; span=(0, 33), match='Hello 111 2222 World hello python'>
111 2222
贪婪模式
import re


content = 'Hello 111 2222 World hello python'
res = re.match('^H.*(\d+)\s(\d+).*python$', content)
print(res)
print(res.group(1), res.group(2)) 
运行结果:
<_sre.SRE_Match object; span=(0, 33), match='Hello 111 2222 World hello python'>
1 2222
非贪婪模式
import re


content = 'Hello 111222 World hello python'
res = re.match('^He.*?(\d+).*?python$', content)
print(res)
print(res.group(1))
运行结果:
<_sre.SRE_Match object; span=(0, 31), match='Hello 111222 World hello python'>
111222
匹配模式
模式                  描述
re.I                  匹配的字符忽略大小写
re.M                  多行匹配
re.L                  本地化识别匹配
re.U                  根据Unicode进行相应化解析
re.S                  让 . 匹配包括换行符         
import re


content = """Hello 1112222 World 
          hello python"""
res = re.match('^H.*?(\d+).*?python$', content, re.S)
print(res)
print(res.group(1))
运行结果:
<_sre.SRE_Match object; span=(0, 43), match='Hello 1112222 World \n          hello python'>
1112222
转义
import re


content = """The apple's price is $5.00"""
res = re.match('The apple\'s price is \$5.00', content, re.S)
print(res)
print(res.group())
<_sre.SRE_Match object; span=(0, 26), match="The apple's price is $5.00">
The apple's price is $5.00

总结:尽量使用泛匹配、使用括号得到匹配目标、尽量使用非贪婪模式、由换行符就用re.S

re.search

re.search 扫描整个字符串并返回第一个成功的匹配

# 使用re.match()
import re


content = """This is a string"""
res = re.match('a', content, re.S)
print(res)
运行结果:
None
# 使用re.search()
import re


content = """This is a string"""
res = re.search('a\s\w*', content, re.S)
print(res)
print(res.group())
运行结果:
<_sre.SRE_Match object; span=(8, 16), match='a string'>
a string

总结:为匹配方便,能用search就不用match

re.findall

搜索字符串,以列表形式返回全部能匹配的子串

import re


content = """This is a string"""
res = re.findall('a\s\w*', content, re.S)
print(res)
运行结果:
['a string']
re.sub

替换字符串中每一个匹配的子串后返回替换后的字符串

import re


content = """This is 222211111 string"""
res = re.sub('\d+', 'a',content)
print(res)
运行结果:
This is a string
re.compile

将正则字符串编译成正则表达式对象

将一个正则表达式串编译成正则对象,以便于复用该匹配模式

import re


content = """This is 222211111 string"""
pattern = re.compile('\d+')
res = re.search(pattern, content)
print(res)
print(res.group())
运行结果:
<_sre.SRE_Match object; span=(8, 17), match='222211111'>
222211111

欢迎访问

个人博客地址:www.limiao.tech


目录
相关文章
|
1天前
|
Python
Python使用正则表达式分割字符串
在Python中,你可以使用re模块的split()函数来根据正则表达式分割字符串。这个函数的工作原理类似于Python内置的str.split()方法,但它允许你使用正则表达式作为分隔符。
|
4天前
|
SQL 算法 数据挖掘
leetCode第十题 : 正则表达式匹配 动态规划【10/1000 python】
leetCode第十题 : 正则表达式匹配 动态规划【10/1000 python】
|
6天前
|
数据采集 监控 Python
Python新手必看:正则表达式入门到精通只需这一篇!
了解 Python 中的正则表达式,用于高效处理字符串。导入 `re` 模块,用 `r` 前缀避免转义困扰。示例:`re.split` 切分字符串,`re.findall` 进行匹配与查找,数量词如 `*`, `+`, `?` 控制匹配次数,边界匹配定位开始或结束。使用 `group` 和 `sub` 进行组合操作,解决复杂文本处理问题。正则表达式是字符串处理的利器,助你轻松应对各种场景。
8 0
|
7天前
|
数据库 C++ 索引
Python 正则表达式
Python 正则表达式
|
9天前
|
机器学习/深度学习 缓存 固态存储
11.Python 正则表达式
11.Python 正则表达式
23 0
|
9天前
|
数据库 Python
Python网络数据抓取(8):正则表达式
Python网络数据抓取(8):正则表达式
15 2
|
10天前
|
Python
Python中re模块的正则表达式
【6月更文挑战第2天】了解Python的re模块,它是处理正则表达式的核心工具。正则表达式用于在文本中查找特定模式。本文讨论了re模块的用法和技巧,包括导入模块、匹配、分组、替换文本、编译正则表达式以及使用预定义字符类、量词、锚点等高级功能。通过实例展示了如何在Python中执行这些操作,帮助提升文本处理能力。掌握这些技巧将使你更有效地利用正则表达式解决字符串处理问题。
10 2
|
14天前
|
开发者 Python
Python 正则表达式
Python 正则表达式
|
29天前
|
Python
Python 内置正则表达式库re的使用
正则表达式是记录文本规则的代码,用于查找和处理符合特定规则的字符串。在Python中,常通过原生字符串`r&#39;string&#39;`表示。使用`re.compile()`创建正则对象,便于多次使用。匹配字符串有`match()`(从开头匹配)、`search()`(搜索首个匹配)和`findall()`(找所有匹配)。替换字符串用`sub()`,分割字符串则用`split()`。
35 3
|
29天前
|
Python Windows
【Python进阶必备】一文掌握re库:实战正则表达式
【Python进阶必备】一文掌握re库:实战正则表达式
28 0