Android 6.0启动过程详细解析

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: 版权声明:您好,转载请留下本人博客的地址,谢谢 https://blog.csdn.net/hongbochen1223/article/details/58192240 在之前的一篇文章中,从概念上学习了Andoird系统的启动过程,Android系统启动过程学习而在这篇文章中,我们将从代码角度仔细学习Android系统的启动过程,同时,学习Android启动过程中的初始化脚本语言,即init.rc中的语言语法。
版权声明:您好,转载请留下本人博客的地址,谢谢 https://blog.csdn.net/hongbochen1223/article/details/58192240

在之前的一篇文章中,从概念上学习了Andoird系统的启动过程,Android系统启动过程学习

而在这篇文章中,我们将从代码角度仔细学习Android系统的启动过程,同时,学习Android启动过程中的初始化脚本语言,即init.rc中的语言语法。在这里,不在详细介绍Linux内核的启动过程,主要学习从Linux内核启动之后,init初始化是如何工作的,他是如何启动Android系统的第一个进程–Zygote进程。并且还会继续了解后面其他的进程是如何通过Zygote进程启动的。话不多说,我们现在就来气Android系统启动之路。

## Android系统启动流程图

Android系统启动流程图

我们都知道,Android系统内核是基于Linux内核,所以在Android系统启动过程中,首先启动Linux内核,Bootloader加载并启动Linux内核,内核启动完成之后,内核开始启动Android系统的init进程,然后init进程通过init.rc启动脚本语言的执行,来启动Zygote进程,作为Android其他进程的父进程,Zygote进程做完初始化工作之后,启动SystemServer来启动其他系统服务。

下面我们从init进程的启动开始学习。


      int main(int argc, char** argv) {
        if (!strcmp(basename(argv[0]), "ueventd")) {
            return ueventd_main(argc, argv);
        }

        if (!strcmp(basename(argv[0]), "watchdogd")) {
            return watchdogd_main(argc, argv);
        }

        // Clear the umask.
        umask(0);

        add_environment("PATH", _PATH_DEFPATH);

        bool is_first_stage = (argc == 1) || (strcmp(argv[1], "--second-stage") != 0);

        // Get the basic filesystem setup we need put together in the initramdisk
        // on / and then we'll let the rc file figure out the rest.
        if (is_first_stage) {
            mount("tmpfs", "/dev", "tmpfs", MS_NOSUID, "mode=0755");
            mkdir("/dev/pts", 0755);
            mkdir("/dev/socket", 0755);
            mount("devpts", "/dev/pts", "devpts", 0, NULL);
            mount("proc", "/proc", "proc", 0, NULL);
            mount("sysfs", "/sys", "sysfs", 0, NULL);
        }

        // We must have some place other than / to create the device nodes for
        // kmsg and null, otherwise we won't be able to remount / read-only
        // later on. Now that tmpfs is mounted on /dev, we can actually talk
        // to the outside world.
        open_devnull_stdio();
        klog_init();
        klog_set_level(KLOG_NOTICE_LEVEL);

        NOTICE("init%s started!\n", is_first_stage ? "" : " second stage");

        if (!is_first_stage) {
            // Indicate that booting is in progress to background fw loaders, etc.
            close(open("/dev/.booting", O_WRONLY | O_CREAT | O_CLOEXEC, 0000));

            property_init();

            // If arguments are passed both on the command line and in DT,
            // properties set in DT always have priority over the command-line ones.
            process_kernel_dt();
            process_kernel_cmdline();

            // Propogate the kernel variables to internal variables
            // used by init as well as the current required properties.
            export_kernel_boot_props();
        }

        // Set up SELinux, including loading the SELinux policy if we're in the kernel domain.
        selinux_initialize(is_first_stage);

        // If we're in the kernel domain, re-exec init to transition to the init domain now
        // that the SELinux policy has been loaded.
        if (is_first_stage) {
            if (restorecon("/init") == -1) {
                ERROR("restorecon failed: %s\n", strerror(errno));
                security_failure();
            }
            char* path = argv[0];
            char* args[] = { path, const_cast<char*>("--second-stage"), nullptr };
            if (execv(path, args) == -1) {
                ERROR("execv(\"%s\") failed: %s\n", path, strerror(errno));
                security_failure();
            }
        }

        // These directories were necessarily created before initial policy load
        // and therefore need their security context restored to the proper value.
        // This must happen before /dev is populated by ueventd.
        INFO("Running restorecon...\n");
        restorecon("/dev");
        restorecon("/dev/socket");
        restorecon("/dev/__properties__");
        restorecon_recursive("/sys");

        epoll_fd = epoll_create1(EPOLL_CLOEXEC);
        if (epoll_fd == -1) {
            ERROR("epoll_create1 failed: %s\n", strerror(errno));
            exit(1);
        }

        signal_handler_init();

        property_load_boot_defaults();
        start_property_service();

        init_parse_config_file("/init.rc");

        action_for_each_trigger("early-init", action_add_queue_tail);

        // Queue an action that waits for coldboot done so we know ueventd has set up all of /dev...
        queue_builtin_action(wait_for_coldboot_done_action, "wait_for_coldboot_done");
        // ... so that we can start queuing up actions that require stuff from /dev.
        queue_builtin_action(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");
        queue_builtin_action(keychord_init_action, "keychord_init");
        queue_builtin_action(console_init_action, "console_init");

        // Trigger all the boot actions to get us started.
        action_for_each_trigger("init", action_add_queue_tail);

        // Repeat mix_hwrng_into_linux_rng in case /dev/hw_random or /dev/random
        // wasn't ready immediately after wait_for_coldboot_done
        queue_builtin_action(mix_hwrng_into_linux_rng_action, "mix_hwrng_into_linux_rng");

        // Don't mount filesystems or start core system services in charger mode.
        char bootmode[PROP_VALUE_MAX];
        if (property_get("ro.bootmode", bootmode) > 0 && strcmp(bootmode, "charger") == 0) {
            action_for_each_trigger("charger", action_add_queue_tail);
        } else {
            action_for_each_trigger("late-init", action_add_queue_tail);
        }

        // Run all property triggers based on current state of the properties.
        queue_builtin_action(queue_property_triggers_action, "queue_property_triggers");

        while (true) {
            if (!waiting_for_exec) {
                execute_one_command();
                restart_processes();
            }

            int timeout = -1;
            if (process_needs_restart) {
                timeout = (process_needs_restart - gettime()) * 1000;
                if (timeout < 0)
                    timeout = 0;
            }

            if (!action_queue_empty() || cur_action) {
                timeout = 0;
            }

            bootchart_sample(&timeout);

            epoll_event ev;
            int nr = TEMP_FAILURE_RETRY(epoll_wait(epoll_fd, &ev, 1, timeout));
            if (nr == -1) {
                ERROR("epoll_wait failed: %s\n", strerror(errno));
            } else if (nr == 1) {
                ((void (*)()) ev.data.ptr)();
            }
        }

        return 0;
    }

该文件位于system/core/init/init.cpp中,我们来看看init进程都做了哪些工作。

首先,init进程添加环境变量,并且挂载相应的目录。在主目录/之外为kmsg和null创建设备节点。初始化selinux,由于我们这里并不研究selinux的运行机制,所以其初始化细节也不在详究。根据起注释可以知道,如果当前系统处于内核域中,重新执行init来转换到init域中,因为SELinux策略已经被加载了。下面接着通过restorecon命令来将在selinux启动之前创建的目录的安全上下文恢复到正确的属性。

接着,便是信号处理机制的初始化工作,加载启动属性,并启动属性服务器。下面,便进入至关重要的一个函数,也是init进程的主要工作,便是执行init_parse_config_file("/init.rc")函数,该函数的主要作用就是解析init.rc文件,并执行init初始化进程语言。下面我们来看一下这个函数:


    int init_parse_config_file(const char* path) {
        INFO("Parsing %s...\n", path);
        Timer t;
        std::string data;
        if (!read_file(path, &data)) {
            return -1;
        }

        data.push_back('\n'); // TODO: fix parse_config.
        parse_config(path, data);
        dump_parser_state();

        NOTICE("(Parsing %s took %.2fs.)\n", path, t.duration());
        return 0;
    }

该代码位于system/core/init/init_parser.cpp中,该函数读取init.rc文件,并将数据传入到parse_config(path, data)函数中。

我们来看一下parse_config函数:


    static void parse_config(const char *fn, const std::string& data)
    {
        struct listnode import_list;
        struct listnode *node;
        char *args[INIT_PARSER_MAXARGS];

        int nargs = 0;

        parse_state state;
        state.filename = fn;
        state.line = 0;
        state.ptr = strdup(data.c_str());  // TODO: fix this code!
        state.nexttoken = 0;
        state.parse_line = parse_line_no_op;

        list_init(&import_list);
        state.priv = &import_list;

        for (;;) {
            switch (next_token(&state)) {
            case T_EOF:
                state.parse_line(&state, 0, 0);
                goto parser_done;
            case T_NEWLINE:
                state.line++;
                if (nargs) {
                    int kw = lookup_keyword(args[0]);
                    if (kw_is(kw, SECTION)) {
                        state.parse_line(&state, 0, 0);
                        parse_new_section(&state, kw, nargs, args);
                    } else {
                        state.parse_line(&state, nargs, args);
                    }
                    nargs = 0;
                }
                break;
            case T_TEXT:
                if (nargs < INIT_PARSER_MAXARGS) {
                    args[nargs++] = state.text;
                }
                break;
            }
        }

    parser_done:
        list_for_each(node, &import_list) {
             struct import *import = node_to_item(node, struct import, list);
             int ret;

             ret = init_parse_config_file(import->filename);
             if (ret)
                 ERROR("could not import file '%s' from '%s'\n",
                       import->filename, fn);
        }
    }

该函数和刚刚那个函数位于同一个文件中,很明显,该函数用于解析读取的init.rc文件的字符串,该函数与文件parse.cpp中的next_token()函数配合,进行字符串的解析,然后通过调用parse_new_section()函数将services和actions等添加到运行队列中,等待trigger触发器的触发运行。

有关与Android init language(Android初始化语言)我在博客 Android Init Language(android初始化语言)

中已经进行了详细的介绍。下面我们接着看init进程中的main函数中所做的工作:

init.rc解析完成之后,所有的启动项目都被放入到action_add_queue_tail中,接着调用action_for_each_trigger("early-init", action_add_queue_tail),触发early-init触发器来出发这些相关services和actions的运行。

我们来看一下,在init.rc中,我们看early-init相关启动的services和actions。在这里基本上是恢复某些文件或文件夹的安全上下文,然后调用init_zygote32_64.rc文件中的命令启动zygote。


  service zygote /system/bin/app_process32 -Xzygote /system/bin --zygote --start-system-server --socket-name=zygote
    class main
    socket zygote stream 660 root system
    onrestart write /sys/android_power/request_state wake
    onrestart write /sys/power/state on
    onrestart restart media
    onrestart restart netd

这里的意思是通过/system/bin/app_process32程序启动zygote进程,参数为--zygote--start-system-server,这两个参数在后面我们会用到的。下面我们来看一下Zygote的main函数。


      public static void main(String argv[]) {
            try {
                RuntimeInit.enableDdms();
                // Start profiling the zygote initialization.
                SamplingProfilerIntegration.start();

                boolean startSystemServer = false;
                String socketName = "zygote";
                String abiList = null;
                for (int i = 1; i < argv.length; i++) {
                    if ("start-system-server".equals(argv[i])) {
                        startSystemServer = true;
                    } else if (argv[i].startsWith(ABI_LIST_ARG)) {
                        abiList = argv[i].substring(ABI_LIST_ARG.length());
                    } else if (argv[i].startsWith(SOCKET_NAME_ARG)) {
                        socketName = argv[i].substring(SOCKET_NAME_ARG.length());
                    } else {
                        throw new RuntimeException("Unknown command line argument: " + argv[i]);
                    }
                }

                if (abiList == null) {
                    throw new RuntimeException("No ABI list supplied.");
                }

                registerZygoteSocket(socketName);
                EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_START,
                    SystemClock.uptimeMillis());

                preload();
                EventLog.writeEvent(LOG_BOOT_PROGRESS_PRELOAD_END,
                    SystemClock.uptimeMillis());

                // Finish profiling the zygote initialization.
                SamplingProfilerIntegration.writeZygoteSnapshot();

                // Do an initial gc to clean up after startup
                gcAndFinalize();

                // Disable tracing so that forked processes do not inherit stale tracing tags from
                // Zygote.
                Trace.setTracingEnabled(false);

                if (startSystemServer) {
                    startSystemServer(abiList, socketName);
                }

                Log.i(TAG, "Accepting command socket connections");
                runSelectLoop(abiList);

                closeServerSocket();
            } catch (MethodAndArgsCaller caller) {
                caller.run();
            } catch (RuntimeException ex) {
                Log.e(TAG, "Zygote died with exception", ex);
                closeServerSocket();
                throw ex;
            }
        }

该代码位于frameworks/base/core/java/com/android/internal/os/ZygiteInit.java中。在代码中,他首先通过参数判断是否启动systemServer,也就是通过刚刚我们记录下来的参数--start-system-server判定startSystemServertrue;接着通过调用registerZygoteSocket(socketName)函数来注册zygote套接字,进行进程间的通信,我们来看一下这个函数:


          /**
         * Registers a server socket for zygote command connections
         *
         * @throws RuntimeException when open fails
         */
        private static void registerZygoteSocket(String socketName) {
            if (sServerSocket == null) {
                int fileDesc;
                final String fullSocketName = ANDROID_SOCKET_PREFIX + socketName;
                try {
                    String env = System.getenv(fullSocketName);
                    fileDesc = Integer.parseInt(env);
                } catch (RuntimeException ex) {
                    throw new RuntimeException(fullSocketName + " unset or invalid", ex);
                }

                try {
                    FileDescriptor fd = new FileDescriptor();
                    fd.setInt$(fileDesc);
                    sServerSocket = new LocalServerSocket(fd);
                } catch (IOException ex) {
                    throw new RuntimeException(
                            "Error binding to local socket '" + fileDesc + "'", ex);
                }
            }
        }

该代码位于同一个文件中,通过代码我们可以看到,创建zygote套接字的方式是通过创建一个LocalServerSocket对象来建立进程间的通信,在注释中有说明,注册一个服务套接字用于zygote命令连接。

创建完成zygote套接字之后,执行preload()函数来进行资源文件的预加载工作。


      static void preload() {
            Log.d(TAG, "begin preload");
            preloadClasses();
            preloadResources();
            preloadOpenGL();
            preloadSharedLibraries();
            preloadTextResources();
            // Ask the WebViewFactory to do any initialization that must run in the zygote process,
            // for memory sharing purposes.
            WebViewFactory.prepareWebViewInZygote();
            Log.d(TAG, "end preload");
        }

在这里,加载类,加载资源文件,加载OPenGl,加载共享库,文本资源以及准备WebView。这里不在所说,我们接着往下看。

接着便调用startSystemServer(abiList, socketName)方法启动系统服务,我们来看一下这个函数:


         /**
         * Prepare the arguments and fork for the system server process.
         */
        private static boolean startSystemServer(String abiList, String socketName)
                throws MethodAndArgsCaller, RuntimeException {
            long capabilities = posixCapabilitiesAsBits(
                OsConstants.CAP_BLOCK_SUSPEND,
                OsConstants.CAP_KILL,
                OsConstants.CAP_NET_ADMIN,
                OsConstants.CAP_NET_BIND_SERVICE,
                OsConstants.CAP_NET_BROADCAST,
                OsConstants.CAP_NET_RAW,
                OsConstants.CAP_SYS_MODULE,
                OsConstants.CAP_SYS_NICE,
                OsConstants.CAP_SYS_RESOURCE,
                OsConstants.CAP_SYS_TIME,
                OsConstants.CAP_SYS_TTY_CONFIG
            );
            /* Hardcoded command line to start the system server */
            String args[] = {
                "--setuid=1000",
                "--setgid=1000",
                "--setgroups=1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1018,1021,1032,3001,3002,3003,3006,3007",
                "--capabilities=" + capabilities + "," + capabilities,
                "--nice-name=system_server",
                "--runtime-args",
                "com.android.server.SystemServer",
            };
            ZygoteConnection.Arguments parsedArgs = null;

            int pid;

            try {
                parsedArgs = new ZygoteConnection.Arguments(args);
                ZygoteConnection.applyDebuggerSystemProperty(parsedArgs);
                ZygoteConnection.applyInvokeWithSystemProperty(parsedArgs);

                /* Request to fork the system server process */
                pid = Zygote.forkSystemServer(
                        parsedArgs.uid, parsedArgs.gid,
                        parsedArgs.gids,
                        parsedArgs.debugFlags,
                        null,
                        parsedArgs.permittedCapabilities,
                        parsedArgs.effectiveCapabilities);
            } catch (IllegalArgumentException ex) {
                throw new RuntimeException(ex);
            }

            /* For child process */
            if (pid == 0) {
                if (hasSecondZygote(abiList)) {
                    waitForSecondaryZygote(socketName);
                }

                handleSystemServerProcess(parsedArgs);
            }

            return true;
        }

在这里准备系统服启动的参数,并通过forkSystemServer来创建系统服务进程,接着调用handleSystemServerProcess(parsedArgs)来进行系统服务的处理。


        /**
         * Finish remaining work for the newly forked system server process.
         */
        private static void handleSystemServerProcess(
                ZygoteConnection.Arguments parsedArgs)
                throws ZygoteInit.MethodAndArgsCaller {

            closeServerSocket();

            // set umask to 0077 so new files and directories will default to owner-only permissions.
            Os.umask(S_IRWXG | S_IRWXO);

            if (parsedArgs.niceName != null) {
                Process.setArgV0(parsedArgs.niceName);
            }

            final String systemServerClasspath = Os.getenv("SYSTEMSERVERCLASSPATH");
            if (systemServerClasspath != null) {
                performSystemServerDexOpt(systemServerClasspath);
            }

            if (parsedArgs.invokeWith != null) {
                String[] args = parsedArgs.remainingArgs;
                // If we have a non-null system server class path, we'll have to duplicate the
                // existing arguments and append the classpath to it. ART will handle the classpath
                // correctly when we exec a new process.
                if (systemServerClasspath != null) {
                    String[] amendedArgs = new String[args.length + 2];
                    amendedArgs[0] = "-cp";
                    amendedArgs[1] = systemServerClasspath;
                    System.arraycopy(parsedArgs.remainingArgs, 0, amendedArgs, 2, parsedArgs.remainingArgs.length);
                }

                WrapperInit.execApplication(parsedArgs.invokeWith,
                        parsedArgs.niceName, parsedArgs.targetSdkVersion,
                        VMRuntime.getCurrentInstructionSet(), null, args);
            } else {
                ClassLoader cl = null;
                if (systemServerClasspath != null) {
                    cl = new PathClassLoader(systemServerClasspath, ClassLoader.getSystemClassLoader());
                    Thread.currentThread().setContextClassLoader(cl);
                }

                /*
                 * Pass the remaining arguments to SystemServer.
                 */
                RuntimeInit.zygoteInit(parsedArgs.targetSdkVersion, parsedArgs.remainingArgs, cl);
            }

            /* should never reach here */
        }

在这里完成对创建的系统服务剩余的工作,最后调用RuntimeInit.zygoteInit将剩余的参数传递到系统服务中。


        public static final void zygoteInit(int targetSdkVersion, String[] argv, ClassLoader classLoader)
                throws ZygoteInit.MethodAndArgsCaller {
            if (DEBUG) Slog.d(TAG, "RuntimeInit: Starting application from zygote");

            Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "RuntimeInit");
            redirectLogStreams();

            commonInit();
            nativeZygoteInit();
            applicationInit(targetSdkVersion, argv, classLoader);
        }

该函数位于同目录下面的RuntimeInit.java文件中。这里的nativeZygoteInit()用于进程间通信的初始化操作,applicationInit函数用于服务的启动,我们来看一下:


    private static void applicationInit(int targetSdkVersion, String[] argv, ClassLoader classLoader)
                throws ZygoteInit.MethodAndArgsCaller {
            // If the application calls System.exit(), terminate the process
            // immediately without running any shutdown hooks.  It is not possible to
            // shutdown an Android application gracefully.  Among other things, the
            // Android runtime shutdown hooks close the Binder driver, which can cause
            // leftover running threads to crash before the process actually exits.
            nativeSetExitWithoutCleanup(true);

            // We want to be fairly aggressive about heap utilization, to avoid
            // holding on to a lot of memory that isn't needed.
            VMRuntime.getRuntime().setTargetHeapUtilization(0.75f);
            VMRuntime.getRuntime().setTargetSdkVersion(targetSdkVersion);

            final Arguments args;
            try {
                args = new Arguments(argv);
            } catch (IllegalArgumentException ex) {
                Slog.e(TAG, ex.getMessage());
                // let the process exit
                return;
            }

            // The end of of the RuntimeInit event (see #zygoteInit).
            Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);

            // Remaining arguments are passed to the start class's static main
            invokeStaticMain(args.startClass, args.startArgs, classLoader);
        }

该函数主要是一些运行时的一些工作,同时调用invokeStaticMain来进行main函数的执行,看这个方法的注释,意思便是剩下的参数被传递,用于启动类的静态main函数。这里传递的类参数便是SystemServer类,所以这个函数的工作便是启动SystemServer的main函数。


     /**
         * The main entry point from zygote.
         */
        public static void main(String[] args) {
            new SystemServer().run();
        }

该函数位于frameworks/base/services/java/com/android/server/SystemServer.java类中,这里运行SystemServer的run函数,该函数设置环境变量,启动其他服务,后面就不再赘述了。

接着返回到ZygoteInit.java的main函数中,这个函数最后执行runSelectLoop函数,这里运行一个循环,接收新的连接,读取来自连接的命令。

至此,Android系统的启动过程就到了启动系统服务以及其他服务阶段了,后面我们会在别的博客中进行学习和讲解。

目录
相关文章
|
27天前
|
Java 开发工具 Android开发
Android与iOS开发环境搭建全解析####
本文深入探讨了Android与iOS两大移动操作系统的开发环境搭建流程,旨在为初学者及有一定基础的开发者提供详尽指南。我们将从开发工具的选择、环境配置到第一个简单应用的创建,一步步引导读者步入移动应用开发的殿堂。无论你是Android Studio的新手还是Xcode的探索者,本文都将为你扫清开发道路上的障碍,助你快速上手并享受跨平台移动开发的乐趣。 ####
|
20天前
|
存储 Linux API
深入探索Android系统架构:从内核到应用层的全面解析
本文旨在为读者提供一份详尽的Android系统架构分析,从底层的Linux内核到顶层的应用程序框架。我们将探讨Android系统的模块化设计、各层之间的交互机制以及它们如何共同协作以支持丰富多样的应用生态。通过本篇文章,开发者和爱好者可以更深入理解Android平台的工作原理,从而优化开发流程和提升应用性能。
|
20天前
|
Java 调度 Android开发
安卓与iOS开发中的线程管理差异解析
在移动应用开发的广阔天地中,安卓和iOS两大平台各自拥有独特的魅力。如同东西方文化的差异,它们在处理多线程任务时也展现出不同的哲学。本文将带你穿梭于这两个平台之间,比较它们在线程管理上的核心理念、实现方式及性能考量,助你成为跨平台的编程高手。
|
26天前
|
开发框架 Dart Android开发
安卓与iOS的跨平台开发:Flutter框架深度解析
在移动应用开发的海洋中,Flutter作为一艘灵活的帆船,正引领着开发者们驶向跨平台开发的新纪元。本文将揭开Flutter神秘的面纱,从其架构到核心特性,再到实际应用案例,我们将一同探索这个由谷歌打造的开源UI工具包如何让安卓与iOS应用开发变得更加高效而统一。你将看到,借助Flutter,打造精美、高性能的应用不再是难题,而是变成了一场创造性的旅程。
|
29天前
|
安全 Java Linux
深入解析Android系统架构及其对开发者的意义####
【10月更文挑战第21天】 本文旨在为读者揭开Android操作系统架构的神秘面纱,探讨其如何塑造现代移动应用开发格局。通过剖析Linux内核、硬件抽象层、运行时环境及应用程序框架等关键组件,揭示Android平台的强大功能与灵活性。文章强调了理解Android架构对于开发者优化应用性能、提升用户体验的重要性,并展望了未来技术趋势下Android的发展方向。 ####
45 0
|
2月前
|
开发工具 Android开发 iOS开发
深入解析安卓与iOS开发环境的优劣
【10月更文挑战第4天】 本文将深入探讨安卓和iOS两大主流移动操作系统的开发环境,从技术架构、开发工具、用户体验等方面进行详细比较。通过分析各自的优势和不足,帮助开发者更好地理解这两个平台的异同,从而为项目选择最合适的开发平台提供参考。
29 3
|
1月前
|
安全 5G Android开发
安卓与iOS的较量:技术深度解析
【10月更文挑战第24天】 在移动操作系统领域,安卓和iOS无疑是两大巨头。本文将深入探讨这两个系统的技术特点、优势和不足,以及它们在未来可能的发展方向。我们将通过对比分析,帮助读者更好地理解这两个系统的本质和内涵,从而引发对移动操作系统未来发展的深思。
52 0
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
71 2
|
2月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
76 0
|
2月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
62 0

推荐镜像

更多
下一篇
DataWorks